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FOREWORD

Tables of the U.S. Standard Atmosphere to heights in excess of 300 km have appeared

in various editions over the past 18 years, the most recent being the U.S. Standard

Atmosphere, 1975 (COESA, 1975) to heights of 1000 km. These publications have

resulted from the work stimulated and guided by the Committee for Extension to

the Standard Atmosphere (COESA). This committee has a membership of about

30 organizations in government, industry, research institutions, and universities. The

particular organizational representations in COESA resulted primarily from either

the organization's scientific or administrative needs, or the organization's potential,

for contributions to a standard atmosphere. In several cases, however, an organiza-

tion's association with COESA stemmed largely from the interests and talents of

individual scientists employed by that organization.

During the course of this work, COESA was led by three co-chairmen, each associated

with one of the three principal sponsoring government agencies. These three agencies

and the co-chairmen were: National Aeronautics and Space Administration (NASA),

Maurice Dubin; National Oceanic and Atmospheric Administration (NOAA), Arnold

R. Hull; and United States Air Force (USAF), K. S. W. Champion.

The requirements and viewpoints of the many organizations participating in COESA

have shaped the format of the U.S. Standard Atmosphere, 1975 (COESA, 1975).

The scientific foundation for this Standard, however, is based upon the views of the

international comnmnity of scientists including, to a large extent, the members of

the Working Group of COESA. This Working Group, comprised of individual scien-

tists representing nearly all of the 30 organizations in the parent committee, has

based the U.S. Standard Atmosphere publication on current scientific and technical

knowledge, rather than on policy concerns.

The Working Group established five task groups for the preparation of the 1975

Standard; some members contributed to more than one task group. Each of these

task groups was charged with reviewing a particular category of available atmospheric

data, and with preparing recommendations for possible revisions of the U.S. Stan-

dard Atmosphere, 1962 (COESA, 1962). Three task groups (Task Groups I, II, and

III) dealt with data involving the three overlapping height regions: 50 to 100 km, 80

to 200 kin, and 140 to 1000 km, respectively. Task Group IV was charged with

combining the recommendations of Task Groups I, II, and III into an internally-con-

sistent model. Task Group V reviewed the present-day knowledge of minor con-

stituents.
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The membership of each of the five task groups is listed in the Foreword of the U.S.

Standard Atmosphere, 1975 (COESA, 1975). This book also includes an extensive

section of detailed tables of the properties of the Standard, which applies to a mean,

midlatitude atmosphere for heights from 0 to 1000 km. The rationale for the model

and an extensive discussion of the minor atmospheric constituents are also included.

By contrast, Defining Constants, Equations, and Abbreviated Tables of the 1975

U.S. Standard Atmosphere emphasizes the definitions required to generate the tables

of atmospheric properties of the Standard. This report also contains an abbreviated

set of these tables, a set of graphs depicting the height profiles of these properties,

and a discussion of two properties not considered in the 1975 Standard, that is, geo-

potential pressure scale height and geopotential density scale height.
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SYMBOLS

a°
1

A

A.

J

b.
I

B.
J

C.

J

C
S

D.
1

f(Z)

F.

!

F_
!

One of the constant coefficients used to specify the elliptical segment of the

temperature-height profile, T(Z)

A set of species-dependent coefficients which, along with values of b i, are used to

define the set of height-dependent functions, D.
1

Another constant coefficient used to specify the elliptical segment of T(Z)

A reaction-dependent rate coefficient used along with values Bj and Cj, to define
k.

J

A dimensionless subscript designating a set of integers {0, 1,2, 3 ...} with 0

specifying sea-level conditions

A set of species-dependent exponents which, along with values of a i, are used to

define the set of height-dependent functions, Di

A dimensionless, reaction-dependent exponent used in the expression for kj

A reaction-dependent rate factor used as a part of all exponential expression in

the definition of k.
l

The height-dependent speed of sound

The set of height-dependent, species-dependent, molecular-diffusion coefficients

for the atmospheric gas species O, 0 2 , Ar, He, and H

The hydrostatic term in the height-dependent expression for n i

The dimensionless, sea-level, fractional-volume concentration of the ith member

of the set of atmospheric gas species

The dimensionless, fractional-volume concentration of the ith member of the set

of atmospheric gas species adjusted for 86-kin height to account for the dissocia-

tion of O z
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g

?

go

H

Hp

?

Hp

H
P

t

P

k

k.
J

k t

K

L

LK,b

LM,b

M

The height-dependent acceleration of gravity (g(Z)) for 45 °

The adopted constant involved in the definition of the standard geopotential

meter, and in the relationship between geopotential height and geometric height

The geopotential height used as the argument for all tables up to 84.8520 kin'

(86 km)

The height-dependent, local pressure scale height of the mixture of gases com-

prising the atmosphere

The height-dependent, local geopotential pressure scale height of the mixture of

gases comprising tile atmosphere, and dependent upon the single variable, T M

The height-dependent, local density scale height of the mixture of gases com-

prising the atmosphere

The height-dependent, local geopotential density scale height of the mixture of

gases comprising the atmosphere

A dimensionless subscript designating the ith member of a set of gas species

A dimensionless subscript designating the jth member of a set of chemical reac-
tions

Tile Boltzmann constant

The reaction rate of the jth chemical reaction

The height-dependent coefficient of thermal conductivity

The height-dependent, eddy-diffusion (or turbulent-diffusion) coefficient

The height-dependent, mean free path

A set of gradients of T with respect to Z

A set of gradients of TM with respect to H

The height-dependent, mean molecular weight of the mixture of gases constituting

the atmosphere

..°
VIII



M.
1

n,
!

N

N A

P

P.
I

qi

Qi

r o

R •

S

t

T

T
c

T M

Y_

U.
!

The set of molecular weights of the several atmospheric gas species

The set of height-dependent number densities of the several atmospheric gas

species

The height-dependent, total number density of the mixture of neutral atmo-

spheric gas particles

The Avogadro constant

The height-dependent, total atmospheric pressure

The partial pressure of the ith gas species

One set of six adopted sets of species-dependent constants, that is, sets qi, Qi' ui'

Ui, wi, and Wi, all used in an empirical, species-dependent expression for the flux

term vi/(D i + K)

See qi

The adopted, effective earth's radius used to compute g(Z) for 45 ° North latitude,

and used for relating H and Z at that latitude

The universal gas constant

The Sutherland constant, used in computing

The height-dependent Celsius temperature

The height-dependent, Kelvin kinetic temperature, defined as a function of Z

for all heights above 86 kin, and derived from T M for heights below 86 km

The temperature coordinate of the center of the ellipse defining a portion of

T(Z)

The height-dependent, molecular-scale temperature defined as a function of H

for all heights from sea-level to 86 km

The exospheric temperature

See qi
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U°
!

V.
I

v
m

V

W°
I

W.
1

Z

Z
C

1

F

r/

P

o

See qi

The flow velocity of the ith gas species

The height-dependent mole volume

The height-dependent mean particle speed

See qi

See qi

Geometric height used as the argument of all tables at heights above 86 km

The height coordinate of the center of the ellipse defining a portion of T(Z)

The set of species-dependent, thermal-diffusion factors

A constant used for computing/a

A constant representing the ratio of specific heat at constant pressure to the

specific heat at constant volume used to define Cs

t

The ratio go/go

A dimensionless factor relating F i to FI

The height-dependent kinematic viscosity

A coefficient used to specify the exponential expression defining a portion of

T(Z)

The height-dependent coefficient of dynamic viscosity

The height-dependent mean collision frequency

A function of Z used in the exponential expression defining a portion of T(Z)

The height-dependent mass density of air

The effective mean collision diameter used in defining L and v

x



(I) G

_c

A height-dependent coefficient representing the reduced height of the atomic

hydrogen relative to a particular reference height, and used in the computation of

n(H) (number density of hydrogen)

The vertical flux of atomic hydrogen

The potential energy per unit mass of gravitational attraction

The potential energy per unit mass associated with centrifugal force
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INTRODUCTION

The U.S. Standard Atmosphere, 1975 (COESA, 1975) is an idealized, steady-state represen-

tation of the earth's atmosphere from the surface of the earth to 1000-km altitude, as it is

assumed to exist in a period of moderate solar activity. For heights from the surface to

51 geopotential kilometers (km'), this Standard is identical to the U.S. Standard Atmo-

sphere, 1962 (COESA, 1962), and is based on traditional definitions. These definitions,

especially for heights below 20 km', were developed over a period of many years, and do

not necessarily represent an average of the vast amount of atmospheric data available today

from observations within that height region. For heights from 51 to 84.8520 km' (that is,

51.413 to 86 geometric kilometers), the 1975 Standard is consistent with averages of

present-day atmospheric data, as represented by the traditional type of defining parame-

ters. These include the linearly-segmented temperature-height profile, and the assumption

of hydrostatic equilibrium, in which the air is treated as a homogeneous mixture of the

several constituent gases.

At greater heights, however, where dissociation and diffusion processes produce significant

departures from homogeneity, the definitions governing the 1975 Standard are more

sophisticated that those used at lower altitudes. In this high-altitude regime, the hydro-

static equation, as applied to a mixed atmosphere, gives way to the more general equation

for the vertical component of the flux for individual gas species (Colegrove et al., 1965;

Keneshea and Zimmerman, 1970), which accounts for the relative change of composition

with height. This flux equation simplifies to the hydrostatic equation for the special case

when the atmospheric gases remain well mixed, as is the situation below 86 km.



Thetemperature-heightprofilebetween86and 1000km is notexpressedasa seriesof
linearfunctions,asat loweraltitudes. Rather,it isdefinedin termsof four successive
functionschosennot only to provideareasonableapproximationto observations,but
alsoto yielda continuousfirst derivativewith respectto altitudeoverthe entireheight
regime.

Observationaldataof variouskindsprovidethebasisfor independentlydeterminingvari-
oussegmentsof this temperature-heightprofile. Theobservedtemperaturesat heights
between110and120kin wereparticularlyimportantin imposinglimits on theselection
of thetemperature-heightfunctionfor that region.At thesametime,theobserveddensi-
tiesat 150km andabovestronglyinfluencedtheselectionof both thetemperatureand
theverticalextentof the low-temperatureisothermallayerimmediatelyabove86km.

Themeantemperaturesderivedfrom datasetsassociatedwith successiveheightregions
werenot necessarilycontinuous.In spiteof thissituation,it isnecessary,for purposesof
continuityandof mathematicalreproducibilityof thetablesof this Standard,to express
thetemperaturein aseriesof consecutiveheightfunctionsfrom thesurfaceto 1000km.
Theexpressionfor eachsuccessivefunctiondependsupontheend-pointvalueof thepre-
cedingfunction,aswellasuponcertaintermsandcoefficientspeculiarto therelatedheight
interval. Thistotal temperature-heightprofileappliedto thefundamentalcontinuity
models(that is,thehydrostaticequationandtheequationof motion),alongwith all the
ancillaryrequiredconstants,coefficients,andfunctions,definesthe U.S. Standard Atmo-

sphere, 1975 (COESA, 1975). The specification of this definition without any justification

in terms of observed data is the purpose of this document.

The definition of this Standard is completely consistent with the tables of two international

standard atmospheres, that of the International Civil Aviation Organization (ICAO, 1964)

defined up to 32-km altitude, and that of the International Organization for Standardiza-

tion (ISO, 1973) defined up to 50 kin.

INTERNATIONAL SYSTEM OF UNITS

The U.S. Standard Atmosphere, 1975 (COESA, 1975) is defined in terms of the Interna-

tional System (S.I.)of Units (Mechtley, 1973). A list of the symbols, names, and the

related quantities of the applicable basic and derived S.I. units, as well as of the three

non-standard metric units and one English unit employed in this Standard Atmosphere,

is presented in table 1.

BASIC ASSUMPTIONS AND FORMULAS

Adopted Constants

For purposes of computation, it is necessary to establish numerical values for various con-

stants appropriate to the earth's atmosphere. The adopted constants are grouped into

three categories. Category I includes those constants which are common to many branches



Table1
Listof UnitsApplicableto the U.S. Standard Atrnosphere, 1975

(COESA, 1975)

Symbol Name Quantity

Basic S.I.

Derived S.I.

Non-standard

English

m

kg

S

K

tool

meter

kilogram
second

Kelvin

mole

Length

Mass

Time

Thermodynamic temperature

The amount of a substance

N

Pa

l

W

mbar

torr at 0°C

°C

m P

ft

newton

pascal

joule

watt

millibar

torr

Celsius

degree

geopotential

meter

foot

Force (kg " m/s)

Pressure (N/m 2 )

Work, energy or quantity of

heat (N • m)

Rate of energy (or heat)

transfer. (J/s)

Pressure 100 (N/m 2 )

Pressure 133.322 (N/m 2)

Temperature (Kelvin minus

273.15)

Variable unit of length

Length (0.3048 m)*

*Exact definition

of the physical and chemical sciences, and are here considered to be fundamental constants.

Some of these may be multi-valued as in the case of Mi representing the molecular weight

of the ith gas species. Category I includes three single-valued and one nmlti-valued constant.

Category II includes those constants which, in addition to the Category I constants and a

suitable set of equations, are sufficient to define that portion of the 1975 Standard Atmo-

sphere below 86 kin. This category includes nine single-valued and three multi-valued

constants. Category llI includes all the remaining constants wifich, along with Category I

and Category II constants and the related equations required for the low-altitude portion,
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plusanexpansionof that setof equations,arenecessaryto definethat portionof the 1975
StandardAtmosphereabove86km. Thiscategoryincludes7 single-valuedand 12multi-
valuedconstants.

Thevarioussingle-valuedandmulti-valuedconstantsarelistedalphabeticallyby symbolwith-
in eachof thethreecategories.The discussion of each of these constants includes the nu-

merical value and dimensions, except that in the case of multi-valued constants, the values

are given in one or another of five tables immediately following the listing of the three

categories of constants.

Category

k

M i

N A

R •

I Constants

The Boltzmann constant, k = 1.380 622 X 10-23 N - m/K, is theoretically equal

to the ratio R*/N A , and has a value consistent with the carbon-1 2 scale, as cited

by Mechtly (1973).

The quantity Mi represents the set of the 10 values (kg/kmol) of molecular

weight of particular atmospheric gases, listed in table 2. This set is based upon

the carbon-12 isotope scale for which C12 = 12. This scale was adopted in 1961

at the Montreal meeting of the International Union of Pure and Applied Chemis-

try.

The Avogadro constant, N A = 6.022 169 X 1026 kmol q , is consistent with the

carbon-I 2 scale, and is the value cited by Mechtly (1973).

The gas constant, R* = 8.314 32 X 103 N • m/(kmol • K), is consistent with the

carbon-12 scale, but is not the value cited by Mechtly (1973). Rather, it is the

value used in the U.S. Standard Atmosphere, 1962 (COESA, 1962). This value

is not exactly consistent with the above-listed values of k and N A .

Category

F

go

II Constants

The general member, Fi, of the set of values of fractional-volume concentrations

of atmospheric gases (table 2) represents the assumed relative concentrations of

the several gas species comprising dry air at sea level. The values of this set are

identical to those given in the 1962 Standard. Except for minor modifications

which are based upon CO 2 measurements (Keeling, 1960), these values are the

same as those given by Glueckauf (1951) and are based upon the earlier work of

Paneth (1939).

The quantity, go = 9.80665 m/s 2 , represents the adopted sea-level value of the

acceleration of gravity for this Standard. This value is the one originally adopted

by the International Committee on Weights and Measures in 1901 for 45 ° lati-

tude. Even though it has since been shown to be too high by about five parts in

10,000 (List, 1968), this value has persisted in meteorology and in some stan-

dard atmospheres as the value associated with 45 ° latitude, even though it

applies more precisely to a latitude of 45032'33 ''.
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J

go

H b

LM ,b

P0

r o

T O

Tile dimensional constant, go = 9.80665 m 2/(s 2 • m'), selected to relate the
standard geopotential meter (m') to geometric height is numerically equal to

go, but with appropriately different dimensions, that is, m 2/(s 2 • m'). This
constant implicitly defines 1 m' as the vertical increment through which one

must lift 1 kg to increase its potential energy by 9.80665 joules (J). The geome-

tric length of this vertical increment varies inversely with the height-dependent

value of g.

The general member, Hb, of the set of geopotential-height values listed in

table 3 represents the base of each of eight successive atmospheric layers,

defined to have particular constant values of LM,b .

The general member, LM,b, of the set of seven values of gradient dT M/dH of

molecular scale temperature T M (Minzner and Ripley, 1956) with respect to
geopotential H listed in table 3 represents the fixed value appropriate throughout

its related layer, H b to Hb+ 1 . The corresponding pairs of values of H b and LM,b

are based partly on tradition and partly on present-day observations. The first

five of these pairs are identical to those of the first five layers of the 1962 Stan-

dard, while the remaining two pairs have been newly-selected to provide a rea-

sonable fit to the presently-available atmospheric data. The first two values of

the related sets have their origin in one of the earliest aeronautical standard

atmospheres (Toussaint, 1919) and were approximated in the first U.S. Stan-

dard Atmosphere (Diehl, 1925).

The standard sea-level atmospheric pressure, P0 = 1.013250 X l0 s Pa (or N/m 2 ),

was adopted in 1947 in Resolution 164 of the International Meteorological

Organization. This corresponds to the pressure exerted by a column of mercury

0.760 m high, having a density of 1.35951 X 104 kg/m 3, and subject to an accel-

eration due to gravity of 9.80665 m/s 2 . This equivalency definition was adopted

by the International Commission on Weights and Measures in 1948.

The effective earth's radius for purposes of calculating geopotentiai altitude at

any latitude is readily obtained from equations given by Harrison (1968). The

value of ro = 6.356766 X 106 m used in this Standard corresponds to the lati-
tude for which g = 9.80665 m/s 2.

The standard sea-level temperature, T o = 288.15 K, is based upon two inter-

national agreements. The first of these is Resolution 192 of the International

Commission for Air Navigation which in 1924 adopted 15°C as the sea-level

temperature of the International Standard Atmosphere. This value has been

retained unchanged in all known standard atmospheres since that date. The

second agreement is that of the 1954 Tenth General Conference on Weights

and Measures which set the fixed point of the Kelvin temperature scale at the

triple-point temperature 273.16 K, which is 0.01 K above the ice-point tempera-

ture at standard sea-level pressure.
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0

Category

a.
I

b.
1

K 7

Klo

The Sutherland constant, S = 110 K, (Hilsenrath et al., 1955) is a constant in

the empirical expression for dynamic viscosity.

The quantity/3 = 1.458 × 106 kg/(s • m • K 1/2) (Hilsenrath et al., 1955) is a con-

stant in the expression for dynamic viscosity.

The ratio of specific heat of air at constant pressure to the specific heat of air

at constant volume is a dimensionless quantity with an adopted value 3' = 1.4.

This is the value adopted by the Aerological Commission of the International

Meteorological Organization in Toronto, 1948.

The mean effective collision diameter, o = 3.65 X 10 _° m, of gas molecules is a

quantity which varies with gas species and temperature. The adopted value is

assumed to apply in a dry, sea-level atmosphere. Above 85 kin, the validity of

the adopted value decreases with increasing altitude (Herschfelder et al., 1964;

Chapman and Cowling, 1960) due to the change in atmospheric composition.

For this reason, the number of significant figures in tabulations of quantities

involving o is reduced from that used for other tabulated quantities at heights

above 86 km.

III Constants

The quantity ai represents the general member of a set of five values (m -_ • S "1 )

of a species-dependent coefficient listed in table 4, and used in equation 8 for

designating the height-dependent, molecular-diffusion coefficient D. for the
I

related gas species. (See b i.)

The quantity b i represents the general member of a set of five values (dimension-

less) of a species-dependent exponent listed in table 4, and used, along with the

corresponding value of a i, in equation 8 for designating the height-dependent,

molecular-diffusion coefficient for the related gas species. The particular values

of a i and b i adopted for this Standard have been selected to yield a height varia-

tion of D i consistent with observed number densities.

The quantity K 7 = 1.2 X 102 m2/s is the adopted value of the eddy-diffusion

coefficient K, at.Z 7 = 86 km, and in the height interval from 86 up to 91 kin.

Beginning at 91 km and extending up to 115 kin, the value of K is defined by

equation 7b. At 115 km the value of K equals Klo.

The quantity Klo = 0.0 m 2/s is the adopted value of the eddy-diffusion coeffi-

cient K at Z_o = 120 and throughout the height interval from 115 km through

1000 kin.



L_b

n(O) 7

n(H)ll

qi

Qi

Y 9

Y_

U i

U.
1

The two-valued set of gradients LK, b = dT/dZ listed in table 5 was specifically

selected for this Standard to represent available observations. The first of these

two values of LK,b is associated with the layer 86 to 91 km, and the second with

the layer 110 to 120 kin.

The quantity n(O) 7 = 8.6 × 10 _6 m3 is the number density of atomic oxygen

assumed for this Standard to exist at Z 7 = 86 km. This value of atomic oxygen

number density, along with other defined constants, leads to particular values of

number density for N z , 02 , Ar, and He at 86 km. (See Appendix A.)

The quantity n(H)xl = 8.0 X 10 _° m -3 is the assumed number density of atomic

hydrogen at height Z_ = 500 km, and is used as the reference value in computing

the height profile of atomic hydrogen between 150 and 1000 km.

The quantity qi represents the first set of six sets of species-dependent coeffi-

cients listed in table 6 (that is, sets of qi, Qi' ui' Ui' wi' and Wi) the correspond-

hag members of all six of which are simultaneously used in an empirical expres-

sion for the vertical transport term vi/(D i + K) in the vertical flux equation for

the particular gas species. The species-dependent values of all six sets have been

selected for this Standard to adjust number-density profiles of the related gas

species to particular boundary conditions at 150 and 450 kin, as well as at 97 km

in the case of atomic oxygen. These boundary conditions all represent observed

or assumed average conditions. (See equation 37.)

The quantity Qi represents the second set of the six sets of constants described

along with qi above, and listed in table 6.

The quantity T 9 = 240 K represents the kinetic temperature at Z 9 = 110 km.

This temperature has been adopted along with the gradient LK,9 = 12 K/kin to

generate a linear segment of T(Z) for this Standard between 110 and 120 km.

The quantity T = 1000 K represents the exospheric temperature, that is, the

asymptote which the exponential function, representing T(Z) above 120 kin,

closely approaches at heights above about 500 kin, where the mean free path

exceeds the scale height. The value ofT adopted for this Standard is assumed

to represent mean solar conditions.

The quantity ui represents the third set of the six sets of constants described

along with qi above, and listed in table 6.

The quantity U i represents the fourth set of the six sets of constants described

along with qi above, and listed in table 6.
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The quantity wi represents the fifth set of the six sets of constants described

along with qi above, and listed in table 6.

The quantity Wi represents the sixth set of the six sets of constants described

along with qi above, and listed in table 6.

The quantity Z b represents a set of six values of Z for b equal to 7 through 12.

The values Z 7 , Z 8 , Z 9 , and Z10 correspond respectively, to the base of succes-

sive layers characterized by successive segments of the adopted temperature-

height function for this Standard. The fifth value, ZI_, is the reference height

for the atomic hydrogen calculation, while the sixth value, Z12, represents the

top of the region for which the tabular values of the Standard are given. These

six values of Z b , along with the designation of the type of temperature-height
function associated with the first four of these values, plus the related value of

LK,b , for the two segments having a linear temperature-height function, are
listed in table 5.

The quantity 0q represents a set of six adopted species-dependent, thermal-diffu-
sion coefficients listed in table 4.

The quantity _ = 7.2 × 101_ m 2 • s-_ for the vertical flux is chosen as a com-

promise between the classical Jeans' escape flux for To = 1000 K, with correc-

tions to take into account deviations from a Maxwellian velocity distribution at

the critical level (Brinkman, 1971) and the effects of charge exchange with tI +

and O + in the plasmasphere (Tinsley, 1973).

Table 2

Molecular Weights and Assumed Fractional-volume Composition of Sea-level Dry Air

Gas Species

N 2

0 2
Ar

('0 2
Ne

tie

Kr

Xe

CH 4

H2

Molecular Weight

Mi (kg/knlol)

28.013 4

31.998 8

39.948

44.009 95

20.183

4.002 6

83.80

131.30

16.043 03

2.015 94

Fractional Volume

Fi (dimensionless)

0.780 84

0.209 476

0.009 34

0.000 314

0.000018 18

0.000 005 24

0.000001 14

0.000 000 087

0.000 002

0.000 000 5



Table 3

The Adopted Reference Levels and Gradients of the Linearly-segmented

Temperature-height Profile from the Surface to 86 Geometric
Kilometers and the Related Derived Values of

Molecular-scale Temperature

Molccular-scalc Derived Values of
Form of Function Molecular-scale

(;eopotcntial .fcml_craturc Relating T to II
Subscript tleight (;radient Temperature

h t11, (km'} LM.h (K/'km't TM._ (K)

0

I1

20

32

47

51

71

84.8520

-6.5

0.0

+1.0

+2.8

0.0

-2.8

-2.0

Linear

Linear

Linear

Linear

Linear

Linear

Linear

288.150

216,650

216.650

228.650

270.650

270.650

214.650

186.946

Note: 1 hese values of II b anti L M,b plus Ihe defined sea-level va e of T equal to FM, 01 completely specify the geolx_tential-heighI profile of T M from

',he surface to g6 geotnctric kilometers, as designaled b3, tile derived values of FM, b in Ihis table.

Table 4

A Set of Species-dependent, Thermal-diffusion Factors and Two Other Sets of

Species-dependent Constants Required in Specifying the Height-dependent

Function of the Molecular-diffusion Coefficient for the

Several Species Listed

[;as a i(dimensionless) a i =(ml .stl b i(dimensonless

S 2

O

()2
Ar

tte

It

0.00

0.00

0.00

0.00

-0.40

-0.25

6.986 X 102°

4.863 X 102°

4.487 X I02°

1.700 X 1021

3.305 × 102t

0.750

0.750

0.870

0.691

0.500

9



Table5
TheConstantsandFunctionsAdoptedto DefinetheFour-layerTemperature-height
Profilefor AltitudesBetween86and1000km,PlustheDerivedTemperaturesat the

BoundaryHeightsof theSeveralLayers

Subscript

7

8

9

10

I1

12

(;comctric

llcight

Z b (kin)

86

9 I

I10

120

500

1000

Kinetic-temperature

(;radicnl

L_... (K/kin)

0.0

12.0

I:Ol'lll of [:tlllction

Relating T to Z

Linear

Elliptical

Linear

l_ixponcntial

Derived Kinetic

Temperature

T (K)

186.87

186.87

360.00

999.24

1000,00

Nole: These adopted specifications, including Ihc adopted kinelic temperature, 2411 K at I I0 kin, and the kinelic temperature, 186.87 K derived from T M

at 86 kin, plus Ihe speti(lt form ol the c xponential function, cqualiun 31, and the requirement that dl/d Z be continuous 110111 Z 86 kin to Z -

10011 kin. define the height prul]le ol F bci wcen these height limils. The specific form ol tile ellipse, cqualion 27 which satisfies the ,,cveral adopted

condilions is derived in Appemli_. B.

Table 6

Values of Six Sets of Species-dependent Coefficients Applicable to the Empirical

Expression Representing the Flux Term vi/(D i + K) in the Equation for
Number Density of the Four Species Listed

Gas qi (kin3)

O -3.416248 X 10 .3*

O= 0
Ar 0

tic 0

Oi (k111"3)

-5.809644 X IO4

1.3(_6212X 104

9.434079 X 104

-2.457369 X IO4

u i (kin)

97.0

Ui (kin)

56.00311

86.000

86.000

86.000

Wi (kin 3 )

5.008765 X 104

W i (kin -3 )

2.706240 × 10 s

8.333333 × 10 "s

8.333333 × l ff s

6.666667 × 10 _

*'l'his_ ueo[qi pp es_myh_r86,cZ<97knl. I't_rZ >97km, qi=O.Okin-3.

Equilibrium Assumptions

The air is assumed to be ctry, and at heights sufficiently below 86 kin, the atmosphere is

assumed to be homogeneously mixed with a relative-volume composition leading to a con-

stant mean molecular weight, M. In this height region of complete mixing, the air is

treated as if it were a perfect gas, and the total pressure P, the temperature T, and the total

density/9 at any point in the atmosphere are related by the equation of state, that is, the

perfect gas law, one form of which is

p-R*'T

P - (1)
M

10



where R* is the universal gas constant. An alternate form of the equation of state, (equa-

tion 1) this one in terms of the total number density, N, and the Avogadro constant, N A , is

N.R*-T
P - (2)

N A

This form represents the summation of Pi, the partial pressures of the individual gas species,

where Pi is related to n i, the number density of the ith gas species in the following expres-
sion:

Pi = ni " k • T (3)

where k is the Boltzmann constant, which is equivalent to R*/N A .

Within the height region of complete mixing, tile atmosphere is assumed to be in hydrosta-

tic equilibrium, and to be horizontally stratified so that dP, the differential of pressure, is

related to dZ, the differential of geometric height, by the relationship

dP = -g.p • dZ (4)

where g is the height-dependent acceleration of gravity. The elimination of 0 between

equations 1 and 4 yields another well-known form of the hydrostatic equation, which

serves as the basis for the low-altitude pressure calculation:

dP -g. M
d_nP ..... dZ (5)

P R* • T

Above 86 km the hydrostatic equilibrium of the atmosphere gradually breaks down as dif-

fusion and vertical transport of individual gas species lead to the need for a dynamically-

oriented model including diffusive separation. Under these conditions it is convenient to

express the heigilt variations in the atmospheric number density in terms of the vertical

component of the flux of the molecules of individual gas species (Colegrove et al., 1965).

In terms of the ith gas species, this expression is

(dn i n i • (l + oei} dT g22i" Mi./
ni " vi+ Di " \ dZ + +T dZ R* • T l

where

dni ni dT g" n i • M)+ K " _+I.__+ R*--" = 0dZ T dZ T

(6)

V.
1

D i

!

= the vertical transport velocity of the ith species,

= the height-dependent, molecular-diffusion coefficient of the ith species diffusing

through N 2 ,

= the thermal-diffusion factor (dimensionless) of the ith species,

11



Mi = the molecular weight of the ith species,

M = the molecular weight of the gas through which the ith species is diffusing, and

K = the height-dependent, eddy-diffusion coefficient.

The function K is defined differently in each of three height regions

1. For 86 _< Z <; 95 km,

K = K 7 = 1.2 X 102 m 2/s (7a)

2. For95 _<Z< 115 km,

K =

3. For l15_<Z<1000,

400K 7 • exp 1 - 400- (Z- 9512

(7b)

K = K10 = 0.0m2/s (7c)

The function D i is defined by

b.

aiI) i (8)

)2n i

where a i and bi are the species-dependent constants defined in table 4, while T and Zn i are

both altitude-dependent quantities which are specified in detail below. The values of Di,

determined from these altitude-dependent quantities, and the defined constants ai and bi

are plotted in figure 1 as a function of altitude for each of four species, O, O z , Ar, and He.

E

¢._

.9,
(O

150 F T T r , - - =. _o,_co_ _.FFos,o. '/////
, op ////.
..o! o.  us,o.

loot-

F JJ// i
80L ± _ a ,

10 0 1O 1 10 2 10 3 10 4 10 5

MOLECULAR-DIFFUSION AND EDDY-DIFFUSION COEFFICIENTS,m_'/s

Figure 1. Molecular-diffusion and eddy-diffusion coefficients versus geometric altitude.
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The value of D i for atomic hydrogen, H, for heights just below 150 km is also shown in

figure 1. This same figure contains a graph of K as a function of altitude. It is apparent

that for heights sufficiently below 90 km, values of D i are negligible compared with K,

while above 115 km, the reverse is true. In addition, it is known that the flux velocity, vi,

for the various species becomes negligibly small at altitudes sufficiently below 90 kin.

The information regarding the relative magnitudes of vi, Di, and K permits us to consider

the application of equation 6 in each of several regimes. One of these regimes is for

heights sufficiently below 90 km, such that v i and D i are both extremely small compared

with K. Under these conditions, equation 6 reduces to the following form of the hydro-

static equation:

dni dT -g" M
__ + .... dZ (9)

n. T R* " T
1

Since the left-hand side of this equation is seen through equation 3 to be equal to dPi/Pi,

equation 9 is seen to be the single-gas equivalent to equation 5. Consequently, while equa-

tion 6 was designed to describe the assumed equilibrium conditions of individual gases

above 86 kin, it is apparent that it also describes such conditions below that altitude. Here

the partial pressure of each gas comprising the total pressure varies in accordance with the

mean molecular weight of the mixture, as well as in accordance with the temperature and

the acceleration of gravity. Nevertheless, equation 5, expressing total pressure, represents

a convenient step in the development of equations for computing total pressure versus geo-

metric height, when suitable functions are introduced to account for the altitude variation

in T, M, and g.

It has been customary in standard-atmosphere calculations to effectively eliminate the

variable portion of the acceleration of gravity from equation 5 by the transformation of

the independent variable Z to geopotential altitude H. This simplifies both the integration

of equation 5 and the resulting expression for computing pressure. The relationship be-

tween geometric and geopotential altitude depends upon the concept of gravity.

Gravity and Geopotential Altitude

Viewed in the ordinary manner from a frame of reference fixed in the earth, the atmosphere

is subject to the force of gravity. The force of gravity is the resultant (vector sum) of two

forces: (1) the gravitational attraction in accordance with Newton's universal law of gravi-

tation, and (2) the centrifugal force, which results from the choice of an earthbound, rota-

ting frame of reference.

The gravity field, being a conservative field, can be derived conveniently from the gravity

potential energy per unit mass, that is, from the geopotential q_. This is given by

= _c + _c (1 O)

13



whereeecis thepotentialenergyperunit massof gravitationalattraction,andeecis the
potentialenergyperunit massassociatedwith thecentrifugalforce. Thegravityperunit
massis

g = Vee (1l)

whereVeeis thegradient(ascendant)of thegeopotential.Theaccelerationdueto gravity
isdenotedby gandisdefinedasthemagnitudeof g,that is,

g =lgl = IVeel (12)

When moving along an external normal from any point on the surface eel to a point on the

surface ee2 infinitely close to the first surface, so that ee2 = ee_ + dee, the incremental work

performed by shifting a unit mass from the first surface to the second will be

hence

d+ = g ' dZ (13)

Z
ee = g "dZ. (14)

Tile unit of measurement of geopotential (Appendix C) is the standard geopotential meter

which represents the work done by lifting a unit mass one geometric meter, through a

region in which the acceleration of gravity is uniformly 9.80665 m/s 2 .

The geopotential of any point with respect to mean sea level (assumed zero potential),

expressed in geopotential meters, is called geopotential altitude. Therefore, geopotential

altitude, H, is given by

l f0 ZH ..... g • dZ (15)
t t

go go
?

and is expressed in geopotential meters (m') when the unit geopotential, go, is set equal to

9.80665 m2/(s 2 • m').

With geopotential altitude defined as in equation 15, the differential of equation 15 may

be expressed as

t

go " dH = g • dZ. (16)

This expression, introduced into equation 5, will reduce the number of variables prior to

its integration, thereby leading to an expression for computing pressure as a function of

geopotential height.

The inverse-square law of gravitation provides an expression for g as a function of altitude

with sufficient accuracy for most model-atmosphere computations:

14



(17)

wherero is theeffectiveradiusof the earth at a specific latitude as given by Lambert's

equations (List, 1968). Such a value of ro takes into account the centrifugal acceleration

at the particular latitude. For this Standard, the value of ro is taken as 6356.766 kin, and

is consistent with the adopted value of go = 9.80665 m/s 2 for the sea-level value of the
acceleration of gravity. The variation of g as a function of geometric altitude is depicted

in figure 2.

900

800

700

w" 600

500
<

400

2
3OO

200

100

0
7.0 7.5 8.0 8.5 9.0 9.5 10.0

ACCELERATION OF GRAVITY, m/s 2

Figure 2. Acceleration of gravity versusgeometric altitude.

Integration of equation 15, after substitution of equation 17 for g, yields

(r0Z)H .... I''

go _ r° + Z ] ro + Z

(18)
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or

r0 • H
z - (19)

P'r0-H

where P = go/g'o = 1 m'/m.

Differences between geopotential altitudes obtained from equation 18 for various values

of Z, and those computed from the more complex relationship used in developing the

U.S. Standard Atmosphere, 1962, (COESA, 1962) are small. For example, values of H

computed from equation 18 are approximately 0.2, 0.4, and 33.3 m greater at 90, 120,

and 700 km, respectively, than those obtained from the relationship used in the 1962

Standard. In the 1975 Standard, geopotential altitude is used explicitly only at heights

below 86 geometric kilometers.

The transformation from Z to H (equation 16) in the development of the pressure-height

relationship, for heights between the surface of the earth and 86-kin altitude, makes it

necessary to define the altitude variation of T and M in terms of H. It is convenient, there-

fore, to determine the sea-level value of M, as well as the extent of any height dependence

of this quantity, between the surface of the earth and 86-km altitude. Then, for this low-

altitude regime, the two variables, T and M, are combined with the constant Mo into a

single variable T M , which is then defined as a function of H.

Mean Molecular Weight

The mean molecular weight, M, of a mixture of gases is by definition

Z(n i " M i)
M - (20)

Zn i

where n i and M i are the number density and defined molecular weight, respectively, of the

ith gas species. In that part of the atmosphere, between the surface of the earth and about

80-km altitude, mixing is dominant, and the effect of diffusion and photochemical proces-

ses upon M is negligible. In this region, the fractional composition of each species is as-

sumed to remain constant at the defined value, Fi, and M remains constant at its sea-level

value, M0. For these conditions, n i is equal to the product of Fi times the total number
density, N, so that equation 20 may be rewritten as

[F i • N(Z)" Mi] Z(Fi • Mi)

M = M0 = - (21)
£[F i • N(Z)] ZF i

The right-hand element of this equation results from the process of factoring N(Z) out of

each term of both the numerator and the denominator of the preceding fraction, so that,

in spite of the altitude dependence of N, M is seen analytically to equal M o over the entire

altitude region of complete mixing. When the defined values of F i and M i (from table 2)
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areintroducedinto equation21,M0isfoundto be28.9644kg/kmol. At 86km(84.852km'),
however,thedefinedvalueof atomic-oxygennumberdensity(8.6 × 1016m3 ) isseen(in
AppendixA) to leadto avalueof M = 28.9522kg/kmol,about0.04percentlessthanMo.
To produceasmoothtransitionfrom thisvalueof M to Mo, the altitudeprofileof M has
beenarbitrarilydefinedat intervalsof 0.5kin', for altitudesbetween79.006and84.852km',
in termsof theratioM/M0 asgivenin table7. Theseratiovalueshavebeeninterpolated
from thoseinitially selectedfor intervalsof 0.5geometrickilometersbetween80and86kln
to satisfytheboundaryconditionsofM = Mo = 28.9644at 80kin, andM = 28.9522at
86km,andto satisfyaconditionof smoothly-decreasingfirst differencesin M within the
heightintelwal,80 to 86kin.

Table7
Molecular-weightRatioversusGeopotentialandGeometricAltitudesill Meters

H Z M/Mo Z H M/Mo

79000
79500
80000
80500
81000
81500
82000
82500
83000
83500
84000
84500

79994.1
80506.9
81019.6
81532.5
82045.4
82558.6
83071.5
83584.8
84098.0
84611.4
85124.8
85638.4

1.000000
0.999996
0.999988
0.999969
0.999938
0.999904
0.999864
0.000822
0.999778
0.999731
0.999681
0.999679

80000
80500
81000
81500
82000
82500
83000
83500
84000
84500
85000
85500
86000

79005.7
79493.3
79980.8
80468.2
80955.7
81443.0
81930.2
82417.3
82904.4
83391.4
83878.4
84365.2
84852.0

1.000000
0.999996
0.999989
0.999971
0.999941
0.999909
0.999870
0.999829
0.999786
0.999741
0.999694
0.999641
0.999578

Thesearbitrarily-assignedvaluesof M/M0 maybeusedfor correctinganumberof parame-
tersof thisStandard,if thetabulationsareto correctlyfit themodelin the fifth, andper-
hapsin thefourth, significantfigureswithin thisheightregion.Thisafter-the-factcorrec-
tion isrequiredbecausethesevaluesof M/Mo werenot includedin theprogramusedfor
computingthetablesof this Standardbelow86kin,andhence,thetabulationsof someof
thepropertiesmayshowadiscontinuityof up to 0.04percentbetween85.5and86km.
Thissituationexistsparticularlyfor fourpropertiesinadditionto molecularweight:
kinetictemperature,total numberdensity,mean-freepath,andcollisionfrequency.For
thesefiveparameters,thediscrepancyin the detailedtablesbetween80and86kmcanbe
readilyremediedbya simplemultiplicationor division:Tabulatedvaluesof M,T, andL
mustbemultipliedbythecorrespondingvaluesof M/Mo from table7;tabulatedvaluesof
N andv mustbedividedbythe correspondingvaluesof M/Mo.
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Threeotherproperties-dynamicviscosity,kinematicviscosity,andthermalconductivity
(whicharetabulatedonly for heightsbelow86km)-havesimilardiscrepanciesfor heights
immediatelybelow86km. Thesevaluesarenot sosimplycorrected,however,becauseof
theempiricalnatureof their respectivedefiningfunctions. Rather,thesequantitiesmust
berecalculatedin termsof asuitably-correctedsetof valuesof T, if thepreciselycorrect
valuesaredesiredfor geometricaltitudesbetween80-and86-kmaltitude.

Molecular-scale Temperature versus Geopotential Altitude (0 to 84.3520 km')

The molecular-scale temperature, T M (Minzner et al., 1958), at a point is defined as the

product of the kinetic temperature, T, at that point times the ratio, Mo/M, where M is the

mean molecular weight of air at that point and M0 is the sea-level value of M discussed

above (see Appendix C). Analytically,

M 0

T M = T .m (22)
M

(When T is expressed in the Kelvin scale, T M is also expressed in that scale.)

The principle virtue of the parameter T M is that it combines the variable portion of M with

the variable T into a single new variable, in a manner somewhat similar to the combining of

the variable portion of g with Z to form the new variable H. When both of these transfor-

mations are introduced into equation 5, and when T M is expressed as a linear function of

H, the resulting differential equation has an exact integral. Under these conditions, the

computation of P versus H becomes a simple process not requiring numerical integration.

Traditionally, standard atmospheres have defined temperature as a linear function of height

to eliminate the need for numerical integration in the computation of pressure versus

height. This Standard follows the tradition to heights up to 86 km, and the function T M
versus H is expressed as a series of seven successive linear equations. The general form of

these linear equations is

TM = TM, b + LM, b ' (H - H b) (23)

with the value of subscript b ranging from 0 to 6 in accordance with each of seven succes-

sive layers. The value of TM,b for the first layer (b = 0) is 288.15 K, identical to the sea-

level value of T, since at this level M = Mo . With this value of TM, b defined, and the set of

six values of Hb and the six corresponding values of LM,b defined in table 3, the function

T M of H is completely defined from the surface to 84.852 km' (86 km). A graph of this

function compared to the similar function of the 1962 Standard is shown in figure 3. From

the surface of the earth to the 51-kin' altitude, this profile is identical to that of the 1962

Standard. The profile from 51 to 84.852 km' was selected in accordance with present-day

data, and abbreviated tables of thermodynamic properties of the atmosphere based upon

this temperature-height profile were published by Kantor and Cole (1973).
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Figure 3. Molecular-scale temperature versus geopotential

altitude.

Kinetic Temperature versus Geometric Altitude (0 to 1000 km)

Between the surface of tile earth and 86-km altitude, kinetic temperature is based upon the

defined values of T M . In the lowest 80 km of this region, where M is constant at M o , T is

equal to T M in accordance with equation 22. Between 80 and 86 kin, however, the ratio

M/M o is assumed to decrease from 1 to 0.9995788, as indicated in table 7, such that the

values of T correspondingly decrease from those of T M. Thus, at Z v = 86 km, a form of

equation 22 shows that Tv has a value 186.8673 K, that is, 0.0787 K smaller than that of

TM at that height.

At heights above 86 km, values of T M are no longer defined, and geopotential is no longer

the primary argument. Instead, the temperature-altitude profile is defined in terms of four

successive functions, each of which is specified in such a way that the first derivative of T

with respect to Z is continuous over the entire altitude region, 86 to 1000 kin. These four

functions begin successively at the first four base heights, Z b , listed in table 5, and are de-

signed to represent the following conditions:

1. An isothermal layer from 86 to 91 kin;

2. A layer in which T(Z) has the form of an ellipse from 91 to 110 km;

19



3. A constant,positive-gradientlayerfrom 110to 120km:and

4. A layerin whichT increasesexponentiallytowardanasymptote,asZ increases

from 120 to 1000 kin.

86 to 91 km

For the layer from Z 7 = 86 km to Z s = 91 km, the temperature-altitude function is defined

to be isothermally linear with respect to geometric altitude, so that the gradient of T with

respect to Z, is zero (see table 5). Thus, the standard form of the linear function, which is

degenerates to

T = Tb +LK, b " (Z- Zb) (24)

T = T 7 = 186.8673 K (25)

and by definition

dT
-- = 0.0 K/kin (26)
dZ

The value of T 7 is derived from one version of equation 22 in which T M is replaced by

TM, 7 = 186.946 from equation 23 or from table 3, and M/M 0 is replaced by the value

0.9995788 from table 7. Thus, T 7 = 186.8673 K. Since the kinetic temperature, T, is

defined to be constant for the entire layer, Z 7 to Z 8 , the temperature at Z 8 is T 8 = T 7

= 186.8673 K, and the gradient, dT/dZ, at Z 8 is LK,8 = 0.0 K/km, the same as for LK,7 .

91 to 110 km

For the layer Z 8 = 91 km to Z 9 = 110 kin, the temperature-altitude function is defined to
be a segment of an ellipse expressed by

[( )2]12Z- Z8
T = Tc+A" 1-

a

(27)

where

T c = 263.1905 K, derived in Appendix B,

A = -76.3232 K, derived in Appendix B,

a = -19.9429 km, derived in Appendix B,

and Z is limited to values from 91 to 110 km.
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Equation27 isderivedin AppendixB from thebasicequationfor anellipse,to meetthe
valuesof T8andLI<,8derivedabove,aswellasthedefinedvalues T 9 = 240 K and

LK,9 = 12 K/km, for Z 9 = 110 km. With these restraints, the values of T c , a, and A are
found to be those cited above.

The expression for dT/dZ related to equation 27 is

( ( )21,J2• z- z 8
dT -A Z- Z8 1
dZ a a a

(28)

110 to 120 km

For the layer Z 9 = 110 km to Z_o = 120 km, T(Z) has the form of equation 24, where

subscript b is 9, such that T b and LK,b are, respectively, the defined quantities T 9 and LK,9
(see Category I|1 Constants and table 5 respectively), while Z is limited to the range 110 to

120 kin. Thus,

T = T 9 +LK,9(Z- Z 9) (29)

and

dT

dZ LK, 9 12.0 K/kin (30)

Since dT/dZ is constant over the entire layer, LK, IO, the value of dT/dZ at Zlo, is identical

to LK, 9 (that is, 12 K/kin) while the value of Tlo at Zlo is found from equation 29 to be
360 K.

120 to 1000 km

For the layer Z_o
(Walker, 1965)

such that

= 120 to Z12 = 1000 km T(Z) is defined to have the exponential form

T = T®- (T- TI0)" exp (-X" _) (31)

r + Zl0) 2
d__Y.Y=X" (T - TlO) • "exp(-X'_)
dZ = r0 + Z

(32)

because _. = LK, 9/(T = - Tl0)= 0.01875,

and = _(Z) = (Z- Zlo) (ro + Zlo)/(r o + Z)
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In the above expressions, Too equals the defined value 1000 K. A graph ofT versus Z from

0- to 1000-kin altitude is given in figure 4. The upper portion of this profile was selected

to be consistent with satellite drag data (Jacchia, 1971), while the mid-portion, particularly

between 86 and 200 kin, and to some extent in the region 200 to 450 km, was selected* to

be consistent with observed temperatures and satellite observations of composition data

(Hedin et al., 1972).
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Figure 4. Kinetic temperature versusgeometric altitude.

COMPUTATIONAL EQUATIONS

The tables of this Standard have been computed in two height regions, 0 to 86 km

(84.852 km'), and 86 to 1000 kin, because the computations for each region are based

on compatible but different sets of initial conditions. These two different sets of initial

conditions lead to two different computational procedures. Consequently, the following

discussion of computational equations, which is presented according to a series of atmo-

spheric parameters, does not necessarily flow in the order in which the calculation is

actually performed for each altitude region. The equations used for computing the various

*Minzner, R. A., C. A. Reber, K. S. W. Champion, F. T. Huang, O. K. Moe, A. O. Nier, G. R. Swenson, S. P. Zimmerman,

"The 1975 Standard Atmosphere Above 86-km Altitude: Recommendations of Task Group II to COESA," 1974, to be

published as NASA SP.
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propertiesof the atmosphere for altitudes below 86 km are, with certain noted exceptions,

equivalent to those used in the 1962 Standard, and the various equations involving T M stem

from expressions used in the ARDC Model Atmosphere, 1956 (Minzner, 1956).

Pressure

Three different equations are used to compute pressure, P, in various height regimes of this

Standard. One of these equations applies to heights above 86 km, while the other two apply

to the height regime from the surface of the earth up to 86-kin altitude, within which re-

gime the argument of the computation is geopotential. Consequently, expressions for com-

puting pressure as a function of geopotential altitude stem from the integration of equation
?

5 after replacing g • dZ by its equivalent go dH from equation 16, and after replacing the

ratio M/T by its equivalent Mo/T o in accordance with equation 22. Two forms result from

this integration-one is for the case when LM,b for a particular layer is equal to zero, and the

other when the value of LM,b is not zero. The latter of these two expressions is

?

I 1TM, b R* " LM, b

P = Pb" (33a)
TM, b + LM, b • (H - H b)

and the former is

I ]-go " M0(H- Hb)

P = Pb " exp R* " TM,b
(33b)

Equation 33a is used for layers associated with values of subscript b equal to 0, 2, 3, 5 and

6; equation 33b is used for layers associated with values of subscript b equal to 1 and 4.

P

In these equations, go' Mo' and R* are each defined single-valued constants, while LM,b and

H b are each defined multi-valued constants in accordance with the value of b as indicated

in table 3. In each equation, H may have values ranging from H b to Hb+1 . The quantity

TM, b is a multi-valued constant listed in table 3 with values derived from equation 23 in

accordance with the several values of b and the corresponding defined values of LM,b and

H b . The reference-level value of Pb for b = 0 is the defined sea-level value, Po = 101.3250

kPa (equivalently 101325 N/m 2 or 1013.25 mbar). The values of P b for b = 1 through
b = 6 are obtained from the application of the appropriate member of the pair of equations

33a and 33b for the case when H = Hb+ l .

These two equations applied successively yield the pressure for any desired geopotentiai

altitude from sea level to HT, where H 7 is the geopotential altitude corresponding to the

geometric altitude Z 7 = 86 kin. Pressures for H from 0 to -5 kin' may also be computed
from equation 33a when b = 0.
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For Z equalto 86km andabovethevalueof pressureiscomputedasafunctionof geome-
tric altitude,Z, andinvolvesthe altitude profile of kinetic temperature, T, rather than that

of T M, in an expression in which the total pressure, P, is equal to the sum of the partial
pressures for the individual species as expressed by equation 3. Thus, for Z = 86 to 1000 km,

Y_ni • R* • T
P = _;Pi = Y_ni " k • T = (33c)

Nn

In this expression,

k = the Boltzmann constant, defined in Category I,

T = T(Z) defined in equations 25, 27, 29, and 31 for successive layers,

1
= the sum of the number densities of the individual gas species comprising the

atmosphere at altitude Z above 86 kin, as described below.

Neither ni, the number densities of individual species, nor En i, the sum of the individual
number densities, is known directly. Consequently, pressures above 86 km cannot be com-

puted without first determining n i for each of the significant gas species.

Number Density of Individual Species

In the height region of complete mixing (0 to 80 km), ni, the number density of any parti-

cular major gas species varies with altitude in accordance with the altitude variation of the

total number density, N. For this height region, the value of the ith species is, therefore,

given by

n i = Fi • N (34)

where F. is the constant fractional volume coefficient given for each species in table 2.
1

Since the values of N listed in the detailed tables of this Standard are not completely con-

sistent with the basic definition of the model between 80 and 85 km, as previously dis-

cussed, values of n i calculated from tabulated values of N for this limited height regime,

must be corrected by dividing by the appropriate values of M/M 0 from table 7. At altitudes

above 86 km, equation 34 no longer applies, since the model assumes the existence of vari-

ous processes which lead to particular differing height variations in the number-density

values of several individual species, N 2 , O, 02 , Ar, He, and H, each governed by equation 6.

Ideally, the set of equation 6, each member of which is associated with a particular species,

should be solved simultaneously, since the number densities of all the species are coupled

through the expressions for molecular diffusion which are included in equation 6. Such a

solution would require an inordinate amount of computation, however, and a simpler

approach was desired. This was achieved with negligible loss of validity by some simplifying

approximations, and by calculating the number densities of individual species one at a time

in the order n(N 2 ), n(O), n(O 2 ), n(Ar), n(He), and n(H). For all species except hydrogen

(which is discussed later), we divide equation 6 by ni and integrate directly, to obtain the

following set of simultaneous equations, one for each gas species:
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T7 (v l I.... exp f(Z) + dZ
ni ni. 7 T z7

(35)

In this set of equations,

ni, 7 = the set of species-dependent, number-density values for Z = Z 7 = 86 km,
one member for each of the five designated species, as derived in Appen-

dix A and listed here,

N 1.129794 X 1020 m 3

O 8.6 X 1016 m 3

02 3.030898 X 1019 m "3
Ar 1.351400 X 1018 m "3

He 7.5817 X 101° m a

T 7

T

f(Z)

vi/(D i + K)

= 186.8673 K, the value of T at Z 7 , as specified in equation 25,

= T(Z) defined by equations 25, 27, 29, and 31 for the appropriate altitude

regions,

= the function written as equation 36 below,

= the set of empirical functions written as equation 37 below

For f(Z) we have

where

d;z1- . • Mi+--+---
f(Z) R* • T D i g

(36)

D.
I

M.
1

l

dT/dZ =

M

Di(Z) as defined by equation 8 for the ith species,

K(Z) as defined by equations 7a, 7b, and 7c,

the molecular weight of the ith species as defined in table 2,

the thermal diffusion coefficient for the ith species as defined in table 4,

one of equations 26, 28, 30, or 32, as appropriate to the altitude region,

= M(Z), with special considerations mentioned below.

For [vi/(Di + K)] we have the following set of empirical expressions.

V i

- Qi " (Z- Ui )2 • exp [-W i ° (Z- Ui )3 ]

+ qi " (Ui- z)2 " exp [-w i • (u i - Z) 3 ]

D.+K
1 (37)
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The set of expressions represented by equation 37, while representing a function of both D i

and K, does not directly involve calculated values of either of these coefficients. Rather, it

involves a series of six other coefficients which, for each of four species, have been empiri-

cally selected to adjust the number-density profile of the related species to particular values

in agreement with observations. The defined values of the six sets of species-dependent

c°efficients-qi, Qi, ui, Ui, wi, and Wi used in equation 37-are listed in table 6. The values

of qi and Ui were selected so that for 02 , Ar, and He, the quantity vi/(D i + K) becomes

zero at exactly 86 kin. For atomic oxygen, however, all six of these coefficients contribute

to maximizing this quantity for Z = 86 kin.

Molecular Nitrogen

Molecular nitrogen (N 2 ) is the first species for which n is calculated. On the average, the

distribution of N 2 is close to that for static equilibrium, and hence, for this species, we

may neglect the transport velocity, thereby eliminating the term [vi/(D i + K)] from that

version of equation 35 applying to N2 . This species is dominant above and below the

turbopause, and its molecular weight is close to the mean molecular weight in the lower

thermosphere, where mixing still dominates the distribution process. The effect of mixing

up to 100-km altitude is approximated therefore by two additional adjustments to equation

35 as applied to N 2 . Both adjustments are implicit in f(Z); these are neglecting K and re-

placing Mi by the mean molecular weight M which, for the altitude region 86 to 100 km,,,

is approximated by M0. With these three adjustments, that version of equation 35 applying

to N 2 reduces to

, 1n(N 2) = n(N2) 7 "--_--'exp R* • T
z 7

where

M = M0 for Z _< 100 km, and

M = M(N 2)forz>100km.

Figure 5 shows a graph of n(N 2 ) versus Z.

Species O, 02 , Ar, and He

As noted above, after the calculation of n(N 2) has been performed, the values of n i for the

next four species are calculated from equation 35 in the order O, 02 , Ar, and He. In the

case of O and 02 , the problem of mutual diffusion is simplified by considering N 2 as the
stationary background gas (as described in the previous section). For Ar and He, which

are minor constituents in the lower thermosphere, it is more realistic to use the sum of

the number densites of N 2 , O, and 02 as the background gas in evaluating the molecular-

diffusion coefficient, Di, and the mean-molecular weight, M, except below 100 km where
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M is taken to be the sea-level value, Mo . This latter choice is to maintain consistency with

the method for calculating n(N 2 ).

In equation 37, defining [vi/(O i + K)], the coefficients qi, Qi' ui' Ui' wi' and Wi, which

(except for qi ) are constant for a particular species, are each adjusted such that appropriate

densities are obtained at 450 km for O and He, and at 150 km for O, 02, He, and Ar. The

constant qi' and hence the second term of equation 37, is zero for all species except atomic
oxygen, and is also zero for atomic oxygen above 97 km; the extra term for atomic oxygen

is needed below 97 km to generate a maximum in the density-height profile at the selected

height of 97 km. This maximum results from the increased loss of atomic oxygen by re-

combination at lower altitudes. The flux terms for O and 02 are based on, and lead (quali-

tatively) to the same results as those derived from the much more detailed calculations by

Colegrove et al. (1965) and Keneshea and Zimmerman (1970) and discussed in Appendix

D.

A further computational simplification is realized above 115 km where the eddy-diffusion

coefficient becomes zero. For these altitudes, the set of expressions represented by equa-

tion 35 becomes uncoupled, and each member reduces to a form where the integration is

performed only on the sum of three terms:

1. The barometric term for the particular species (that is, the right-hand side of

equation 5),
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2. Thethermal-diffusionterm (o_i/T) • (dT/dZ),

3. A simplified velocity term.

In the case of O, 02 , and Ar, the thermal-diffusion term is zero. Also, as may be shown,

the velocity term, [vi/(D i + K)], becomes small above 120 km and, with the exception of
atomic hydrogen, each species considered is nearly in diffusive equilibrium at these heights.

For the present model, however, this situation becomes exactly true only at altitudes above

150 km.

The altitude profile of number density for each of the species O, 02 , Ar, and He is given

in figure 5, along with that for N 2 .

Atomic Hydrogen

For various reasons, the height distribution of the number density of atomic hydrogen,

n(H), is defined only for heights from 150 to 1000 km. Below 150 km, the concentration

of H is negligible compared with the concentrations of O, 02, Ar, and He. The defining

expression for n(H), like the expression for n(N 2 ), n(O), and so on, is derived from equa-
tion 6. The solution for n(H), however, is expressed in terms of the vertical flux, n(H)

• v(H) represented by q_,rather than in terms of v(H), because it is the flux which is con-

sidered known for H. In this model, only that contribution to _bdue to planetary escape

from the exosphere is considered.

Since K is zero for the altitude region of interest, the particular version of equation 6 ap-

plied to H is correspondingly simplified, and one possible solution to the resulting expres-

sion is

where

n(H)11

D(H)

T

Tll

n(H) = n(H)ll- D(H)
11

__) l+atH) (exp r)

•(expr)'dZ]

(39)

= 8.0 × 10 l° m 3, the number density of H at Zll = 500 km, as defined in

Category III Constants,

= the molecular diffusion coefficient for hydrogen given by equation 8 in which

the values of a i and b i are as defined in table 4,

= 7.2 X l0 II m-2 • s1 , the vertical flux of H, as defined in Category III Constants,

= T(Z) as specified by equation 31,

= 999.2356 K, the temperature derived from equation 31 for Z = Zll,
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_(H)

T

= the thermal diffusion coefficient for H, -0.25 (dimensionless), as defined in

table 4,

= r(Z) defined in equation 40

fzl z g- M(tt) dZ (40)r= R*'T
l

Because D(H) becomes very large compared with _ for heights above 500 km, the value of

the integral term in equation 39 can be neglected at these heights, and atomic hydrogen is

then essentially in diffusive equilibrium. Figure 5 depicts the graph of n(H) as a function

of Z, along with those of other species.

Mean Molecular Weight (Above 86 km)

Equations 35 through 39 permit the calculation of the number densities of the species N 2 ,

O, 02 , Ar, He, and H for heights above 150 km, and of the first five of these species for
heights between 86 and 150 km, where n(H) is insignificant compared with n(N 2 ). These

number densities permit the calculation of several atmospheric parameters in the height

region 86 to 1000 km. The first is mean molecular weight using equation 20. These values

of M, along with those implicit in table 7 for Z from 80 to 86 km, plus the invariant value,

M0, for heights from 0 to 80 kin, are shown in figure 6.
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Pressure and Mass Density (Above 86 km)

The number densities of the several species also permit us now to compute total pressure

and mass density for heights from 86 to 1000 kin, using equation 33c, and one version of

equation 1. Figure 7 depicts these values as well as those for heights below 86 km computed

from equations 33a and 33b. Finally, these individual number densities permit the calcula-

tion of total number density, N = Zn i, at heights from 86 to 1000 km.
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Figure 7. Total pressure and mass density versus

geometric altitude.

Total Number Density

From equations 2, 22, and 33c, it is apparent that total number density, N, the number of

neutral gas particles per unit volume of the atmosphere, may be expressed in any one of

the following three equivalent forms:

M0 • N A • p NA • p
N - - - Xn i (41)

TM ' R* • M R* • T
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The three forms are selected to satisfy three types of calculations:

1. Those depending upon values of T M ,

2. Those depending upon values of T, and
#

3. Those depending upon values of ]_n i.

This format will be followed in specifying the computational equations, insofar as possible,

for the balance of the quantities discussed in this document. A graph of the altitude varia-

tion of total number density is presented in figure 5, along with the number densities of

individual species. That portion of equation 41 involving T M is of particular interest in

calculating N for heights from 0 to 86 km.

Mass Density

From equations l, 22, and 33c, one may write the following three forms of computational

equations for mass density, p:

P " M0 P" M Z(n i" Mi)
0 .... (42)

R* " T M R* • T N A

The altitude-dependent variations of this quantity are shown in figure 7 along with those

of pressure.

Mole Volume

Mole volume, Vm, of air is defined as the volume of one mole of air, where one mole of air

is the amount consisting of a number of neutral particles equal to N A . In S.I. units, the

quantity vm should specify the number of cubic meters containing 1 kmol of air. Since M
has the dimensions of kg/kmol, and p has the dimensions of kg/m 3 , the ratio M/O, with the

units m 3/kmol, provides the definition of mole volume. Ill terms of equations 1, 22, and

33c, this ratio may be equated to the following series of expressions:

v
m

R*" M "T M R*" T NA

M0 • p P _n i
(43)

This quantity, while not tabulated in this Standard, is shown graphically in figure 8.

Scale Height

Pressure Scale Height

The quantity R* • T/(g • M), which has dimensions of length, is commonly associated with

the concept of scale height and is the defining form of pressure scale height, Hp, used in

this model. Thus, equations 20 and 22 may be written:
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R* • TM R* • T R* • T • Zn i
Hp - - (44)

g. M 0 g" M g'_(n i • Mi)

The reciprocal of this quantity, which appears on the right-hand side of equation 5, is seen

to equal the slope of the function £nP versus Z at height Z in the regions where hydrostatic

equilibrium or diffusive equilibrium holds. In the present model, this condition is true for

heights below 80 km (complete mixing), and is essentially true above approximately

120 km where diffusive equilibrium is nearly satisfied, and where each individual species

is governed by equation 4.

In the 80- to 120-km region, where the transition from a completely mixed atmosphere to

one in diffusive equilibrium takes place, the situation is complicated by the competition

between three processes-molecular diffusion, eddy diffusion, and dissociation of molecu-

lar oxygen. These processes result in a vertical transport, such that equations 4 and 5 are

no longer exactly true in this 40-kin layer. Since molecular nitrogen is the dominant spec-

ies in this altitude range, however, and since this species has a zero transport velocity in

this model, the pressure scale height is still a good indicator of the rate of change of pres-

sure in this height region.
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It shouldbenotedthat equations4 and5alsobecomeinvalidat veryhighaltitudes(the
exosphericregion)dueto theinfrequentcollisionsbetweenneutralparticles.Thus,in this
region,thesignificanceof HFasameasureof d£nP/dZagainlosesvalidity.

In equation44,bothgandTM or all threeof g,T,andM arefunctionsof Z suchthat Hp
is the localvalueof geometricpressurescaleheight. Thisquantity,whichis theparticular
scaleheighttabulatedin this Standard,andwhichisplottedin figure9,is frequentlybut
incorrectlyassociatedwith thealtitudeincrementoverwhichthepressuredecreasesby
exactlyafactorof 1/e. Theconditionsnecessaryfor thepressureto decreaseby exactly
that factoroveranaltitudeincrementof a singlepressurescaleheightwouldbefor the
variablesT, g,andM all to remainconstantoverthat altitudeinterval. Sincegmaynever
beconstantoveranyaltitudeinterval,thisparticularconceptof pressuredecreasecan
rarely,if ever,applyexactlyto Hp.
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With the replacement of g • dZ in equation 5 by go " dH in accordance with equation 16,

and with the replacement of T/M in equation 5 by T M/M o in accordance with equation 22,

as in the development of equations 33a and 33b, an expression for the slope of the func-

tion £nP versus geopotential height is developed. The negative reciprocal of the expression
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t

for this slope is called geopotential pressure scale height, Hp, and it has the same dimensions

as geopotential height. Tile quantity He is implicit in the computational pressure equations

33a and 33b. This concept of scale height may be expressed as follows:

, = __(-d_nP/-1 R*- T M R*" T (45)Hp i t -- i

\ dH l go " M0 go " M

Within a layer of constant T u , or of constant ratio T/M, the pressure does, in fact, decrease

by exactly 1/e of its initial value when the geopotential altitude increases by exactly one

geopotential scale height. This is precisely the situation expressed by equation 33b which,
?

in terms of H e , may be rewritten as

P = Pb'exp --H_ (46)

Equation 45 is rigorously valid only below 80 kin, while equation 46 applies only within

isothermal layers below 80 km.

Density Scale Height

Because of the relationship between Hp and the slope of _nP versus Z it is convenient to

apply the name geometric density scale height, H ° , to the negative reciprocal of the slope
of _np versus Z. Using the equation of state (equation 1) to relate d£np to d_nP, one may

Hp Hp

define

HP = (d_dnTM/_ I + Hp" (d_nT d£nM) (47)
1 + Hp • \ dZ ] \ dZ dZ

The relationships implied between H ° and d_np/dZ are subject to the same limitations as

those between H e and d£nP/dZ expressed above, that is, Hp is only an approximation to
(d_np/dZ) -1 between 80 and 120 km and in the exosphere, where the approximation be-

comes increasingly invalid with increasing altitude.

Within these limitations, it is apparent that in layers where T M does not change with

changing altitude, that is, where (d_nT M/dZ) = 0, H o is equal to Hp. Within such layers,
the slope of £nP versus Z at any particular altitude Z is identical to the slope of £nP versus

Z, but neither P nor p decreases by a factor of 1/e when altitude increases by an amount

He = H ° .

While density scale height is not tabulated in this Standard, values of this quantity are

shown graphically with those of H e in figure 9.
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If, however,ageopotentialdensityscaleheight,H'p, isdefinedasthenegativereciprocalof
theslopeof £npwith respectto geopotential,onemaywrite

t P

l+H;-i-7--,f \7, !
I

This quantity is equal to He in a layer within which T M is constant, and for this condition,

H t specifies the altitude change for which p changes by a factor of 1/e. The quantity H'
p P

permits the writing of a density-altitude equation analagous to the pressure-altitude equa-

tion, equation 33b, but in terms of H' "
P

H- Hb)P = Pb " exp -H_ (49)

As in the case of equation 45, equation 49 is rigorously valid only below 80 km, while

equation 49 applies only within isothermal layers below 80 km.

Mean Air-particle Speed

The mean air-particle speed, V, is the arithmetic average of the speeds of all air particles in

the volume element being considered. All particles are considered to be neutral. For a

valid average to occur, there must be a sufficient number of particles involved to represent

mean conditions. Pressure and temperature gradients within the volume must also be neg-

ligible. The analytical expression for V is closely related to that for the speed of sound,

and is proportional to the ratio T/M. Thus, in terms of equations 20 and 22,

1/2

V = = (50)[8 , = 8" R* • T • 2nil 1/2

- i

rr 7" _(ni Mi )

The variation of particle speed with geometric altitude is shown in figure 10.

Mean Free Path

The mean free path, L, is the mean value of the distances traveled by each of the neutral

particles, in a selected volume, between successive collisions with other particles in that

volume. As in the case of V, a meaningful average requires that the selected volume be

big enough to contain a large number of particles. The computational form for L is

L =

2 1/2 . R* • M • T M 2 1/2 • R* • T 2 1/2
= (51)

2)7 • N A • 0 2 • M0 • P 2_ • N A • 0 2 P 2rr" 0 2 • gn i
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where o is the effective collision diameter of the mean air molecules. The adopted value of

o, that is, 3.65 × 10-1° m is suitable for that part of the atmosphere below about 86 km,

which is dominated by N 2 and 02 . Above this height, the value of o, which depends upon

composition in a complicated manner, begins to change significantly so that tabulations

with four significant figures are no longer valid. At great altitudes, this expression for L

is valid only under assumptions that hold M, T M , P, and o constant throughout the volume

used. Figure 11 depicts the mean free path in terms of altitude.

Mean Collision Frequency

The mean collision frequency, u, is the average speed of the air particles within a selected

volume divided by the mean free path, L, of the particles within that volume. That is,

V
/) =m

L
(52)

and in computation form:
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Figure 11. Mean free path versus geometric altitude.

u = 4N A • 02 • = 4N A " 02 "
R*'M'T

• M 2 T M

(53)

= 4N_. -0 2 " [ 'rr" p2 . I;ni 1|/2

• JR* • T • Z(n i • Mi) 1

Note that o is again involved in this quantity, and hence u has limitations similar to those

of mean free path. The foregoing expressions are taken to apply to neutral particles only,

since no considerations involving charged particles are introduced for purposes of develop-

ing the tables and graphs of this Standard.

Figure 12 graphically displays the variation of collision frequency with altitude. See Mean

Air-particle Speed of this document for a discussion of the assumptions under which equa-

tion 53 is valid at great altitudes.

Speed of Sound

The expression adopted for the speed of sound, Cs, is

7 ° R* " T M

c= Mo
(54)
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Figure 12. Mean collision frequency versus geometric altitude.

where 7 is the ratio of specific heat of air at constant pressure to that at constant volume,

and is taken to be 1.4 exact (dimensionless), as defined in Category II Constants. Equa-

tion 54 for speed of sound applies only when the sound wave is a small perturbation on

the ambient condition. Calculated values of Cs have been found to vary slightly from
experimentally determined values.

The limitations of the concept of speed of sound due to extreme attenuation are also of

concern. The attenuation, which exists at sea level for high frequencies, applies to succes-

sively-lower frequencies as atmospheric pressure decreases, or as the mean free path in-

creases. For this reason, the concept of speed of sound (except for frequencies approaching

zero) progressively loses its range of applicability at high altitudes. Hence, the listing of the

values for speed of sound _are not given for heights above 86 kin. Figure 13 shows the varia-

tion with altitude of the computed speed of sound.

Dynamic Viscosity

The coefficient of dynamic viscosity, p, is defined as a coefficient of internal friction

developed where gas regions move adjacent to each other at different velocities. The
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following expression, basically from kinetic theory but with constants derived from ex-

periment, is used for computation of this quantity:

ft. T3/2

U - (55)
T+S

In this equation,/3 is an exact constant equal to 1.458 × 10 -6 kg/(s • m • Ky2), and S is

Sutherland's constant, equal to 110.4 K (exact), both defined in Category II Constants.

Because of the empirical nature of this equation, no attempt has been made to transform

it into one involving T M .

Equation 55 fails for conditions of very high and very low temperatures, and under condi-

tions occurring at great altitudes. Consequently, tabular entries for coefficient of dynamic

viscosity are not given for heights above 86 km. For these reasons, caution is also necessary

in making measurements involving probes and other objects which are small with respect to

the mean free path of molecules, particularly in the region of 32 to 86 km.

The variation of dynamic viscosity with altitude is shown in figure 14.
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Kinematic Viscosity

Kinematic viscosity, 7, is defined as the ratio of the dynamic viscosity of a gas to the densi-

ty of that gas, that is,

#
77 - (56)

P

Limitations of this equation are comparable to those associated with dynamic viscosity, and

consequently, tabular entries of kinematic viscosity are also not given for heights above

86 km. Figure 15 is a graphical representation of the variation of kinematic viscosity with

altitude.

Coefficient of Thermal Conductivity

The empirical expression adopted for purposes of developing tabular values of the coeffi-

cient of thermal conductivity, k t , for heights up to the 86-km level is as follows:

k t

2.64638 X 10 3 • T 3/2

T + 245.4 X 10(12/T)
(57)
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This expression differs from that used in the U.S. Standard Atmosphere, 1962 (COESA,

1962), in that the numerical constant has been adjusted to accommodate a conversion of

the related energy unit from the temperature-dependent kilogram calorie to the invariant

joule. Thus, the values of k t in units of J/(s • m • K) or W/(m • K) are greater than the

values of kt in units ofkcal/(s • m • K) by a factor of exactly 4.1858 × 103 , when the
kilocalorie is assumed to be the one for 15°C. Kinetic-theory determinations of thermal

conductivity of some monatomic gases agree well with observation. For these gases, ther-

mal conductivity is directly proportional to the dynamic viscosity. Modification of the

simple theory has accounted in part for differences introduced by polyatomic molecules

and by mixtures of gases. Tabular entry of values for coefficient of thermal conductivity

is terminated at 86 kin. The variation with height of this quantity is shown in figure 16.
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SUMMARY OF TABULAR VALUES OF ATMOSPHERIC PROPERTIES

Sea-level Values

The sea-level values of 15 of the atmospheric properties discussed in this Standard are as
follows:
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Symbol Sea-level Value

C,, o 3.40294 X

go 9.80665

Hl,,o 8.4345 X

kt, o 2.5326 X

L o 6.6328 X
v 2.3643 ×

m ,0

Mo 2.89644 X 101 kg/kmol

N o 2.5470 X 102s m 3

Po 1.01325 X l0 s N/m 2

T O 2.8815 X 102 K

V o 4.5894 X 102 m/s

r/o 1.4607 X 10 s m2/s

_o 1.7894 X 10 s kg/(m's)

vo 6.9193 X 10 9 S"1

Po 1.2250 kg/m 3

102 m/s

m/s 2

103 m

10 -3 J/(s " m • K)or W/(m • K)
10-8 m

101 m3/kmol



Thesea-levelvaluesfor g,P,andT aredefinedquantities;theremainderarequantitiescal-
culatedfrom theprecedingequations.

Conversion of Metric to English Units

For those who have need to work in the English System of Units, the conversion factors

listed in table 8 are applicable to the atmospheric parameters tabulated or shown graphi-

cally in this Standard. For other transformations, see Mechtly (1973).

Table 8

Metric to English Conversion Factors for Properties of the

U.S. Standard Atmosphere, 19 75 (COESA, 1975)

Symbol

s

g

Hp

k t
L

V m

M

N

P

T or T M
V

r/

,u
.u

P

To Convert from

Metric Units

m/s
m/s 2

m

W/(m • K)

m

m 3/kmol

To English

Units

ft/s 3.048

ft/s 2 3.048

Divide by

ft 3.048 × 10 "1*

BTU/(ft • s • °R) 6.226 477 504 X 10 .3

ft 3.048 × 10 -1 *

ft3/lbmol 6.242 796 057 × 10 .2

kg/kmol
m-3

mbar

K

m/s

m 2/s

N • s/m 2

S-1

kg/m 3

lb/lbmol

ft-3

in Hg (32°F)

o R

ft/s

ft2/s

lb/(ft • s)

S-1

lb/ft 3

1.000"

3.531 466 672 X 102

3.386 389 X l01

5/9*

3.048 X 10 "1 *

9.290 304 X 10 -2.

1.488 163 944

1.000

1.601 846 3 X 101

*Exact definition.

Tables of Atmospheric Properties

Detailed tables of the height-dependent values of the various atmospheric properties de-

fined by this standard have been prepared elsewhere (COESA, 1975). Abbreviated versions

of these tables are presented at the end of this section in tables 9 through 15. The first four

of these tables, 9 through 12, list atmospheric properties as a function of the boundary

heights of the seven layers adopted to define the temperature-height profile between the

surface of the earth and 86-kin altitude. These boundary heights are specified in integer

multiples of one geopotential kilometer, although the equivalent values of geometric height

are also given.
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Tables13,14,and 15list theatmosphericpropertiesof thisStandardfor 14selectedalti-
tudesin the 86-to 1000-kininterval. Thesealtitudesincludethe boundaryheightsof the
four layersadoptedto definethetemperature-heightprofile in thisheightregion.Because
of thelargeinterval,120toil000 km,comprisingthehighestlayerof this model,thevalues
of thevariousatmosphericpropertiesin tables13,14,and 15havebeengivenfor nineaddi-
tionalheightswithin this layer.

Only threetables(13, 14,and 15)areusedto list thepropertiesof this Standardfor heights
from 86 to 1000kin, ascomparedwith four tablesfor theheightregion0 to 86 km. This
isdueto thefact that, in thisStandard,noneof the fourquantities-speedof sound,dyna-
micviscosity,kinematicviscosity,andthermalconductivity-isdefinedfor heightsabove
86km. Consequently,table 12,whichliststhevaluesof thesepropertiesbelow86km,
hasnocounterpartfor heightsabove86km. Table11,listingnumberdensitiesof five
atmosphericgasspeciesfor heightsfrom 0 to 86km,hasnocounterpartin thedetailed
tablesof theCOESAdocument(COESA,1975).
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Table 9

Temperature, Pressure, and Density versus Geopotential Altitude, 0 to 86 km

Alutude 1

H

km _

0.0000

11.0000

20,0000

32.0000

47,0000

5 ! .0003

71.0000

84.8520

Temperature

• I T

km _ K

q

0.0000 [ 288.150

11.0190 [ 216.650

20.0631 [ 216.650 ~56.500

32.1619 I 228.650 -44.500

47.3500 ] 270.650 - 2.500

51.4124 [ 270.650 - 2500

71.8019 [ 214.650 -58.500

86.0000 t 186,867 I -86.283

Pressure

t T M P P

°C K mbar tort

15.000 288150 1013250+3 760000+2

- 56500 216.650 2,263206 +2 1.69754 +2

216,650 5474889 +1 410650 ÷1

228.650 8.680187 +0 6.51068 +0

270650 1.109063 +0 8.31866-1

270650 6.693887 -1 !5.02083 -1

214,650 3,956420-2 1296756-2

186,946 3733836-3 [2,80061 -3

L

P/Po

1.00000 +0

223361-I1

5.40330-2 1

8,56667-3

1,09456-3

6.60635 -4

3,90468-5

3.68501-6

l_fisity

p [ DIP 0

kCm3 [

I _224999 +0 ! 1.13000 +0

3.639178 -1 2.9708-1

8.803480 - 2 7.1865 - 2

1.322500-2 1.0796-2

1.427532 -3 1.1653-3

8616(149 -4 7.0335 -4

6421099 -5 5.2417 -5

6957879 -6 5.6799 -6
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Table10
SevenSecondaryAtmosphericPropertiesversusGeopotentialAltitude,0 to 86km

Altitude

H I Z g

kin' ] km m,(s 2

0.0000

1 1.0000

20.0000

32.0000

47.0000

51,0000

71,0000

84.8520

0.0000 9.80665

11,0190 9.77274

20,0631 9 74504

32,1619 970817

47,3500 9,66217

51.4124 9.64992

71,8019 9,58881

86,0000 9,54659

Acceleration Pressure

Due to Sc_e

Gra_lty Height

ttp

km

8.4345

6.3636

6.3817

6.7608

8.0407

8.0509

6.4258

5.6212

Number

Density

N

m-3

2.5471 +25

7.5669 +24

1.8305 +24

27499 +23

2.9683 +22

17915 +22

13351 +21

1.4473 +20

Mean

Particle

Speed

V

m/s

458.94

397.95

39795

408 82

444,79

444,79

396,11

396.67

Mean
Mean Free

Collision
Path

Frequency

v L

sq m

69193 +9 66328-8

17824 +9 22327 -7

43117 +8 9.2295 7

66542 +7 61438 -6

7,8146+6 5.6918 5

] 47166 +6 9.4303 -5

31303 +5 1.2654-3

3,1667 +4 11674 -2

Mean I

Molecular [

Weight [

m h

kg/kmol [

28,9044 I

28.9644

28 9644

28.9644

28,9644

28,9644

28,9644

28.9522

Table 11

Number Densities of Five Species versus Geopotential Altitude, 0 to 86 km

Altitude

H Z n(N/)

km t kill rl1-3

0,0000

11.0000

20.0000

32.0000

47.0000

51.0000

71.0000

84.8520

0,00(30

110190

20.0631

32.1619

47.3500

51,4124

71,8019

86.0000

19888 +25

5,9082 +24

1.4292 +24

2.1471 +23

2.3176 +22

1.3988 +22

1.0425 +21

1.1298 ÷20

.(O)

m-3

8,6 +16

Number Densities

u(O 2) n(A) n(He)

11'1.3 111-3 m'3

5.3353 +24

15850 +24

3.8342 +23

5.7599 +22

6.2174 +21

3.7526 +2l

2.7966 +20

3,0309÷19

2,3789 +23

7,0671 +22

1.7096 +22

2.5682 +21

2.7722 ÷20

1.6732 +20

1.2469 ÷19

135140+18

1.3346 +20

3.9648 ÷19

9,5912 +18

1,4408 *18

1.5553 +17

9.3870 +16

6.9957 +15

75817 +14
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Table12
SoundSpeed,DynamicViscosity,KinematicViscosity,andThermalConductivity

versusGeopotentialAltitude,0 to 86km

ound
Altitude

peed

It C% _z

low km m,_s kg/Im " s}

I ----+-----_

000 O [ 0.0000 40.30 17894 -5

i

I

11 00, KI ] 11.0190 :)5,07 14216 5

20.00 _0 I 20.0631 0507 14216-5

32.00)0 I 32.1619 0313 1,4868 5

4700)0 t 47 3500 29.80 1.7037 5

I

[ 51 00 )(3 [ 51,4124 29.80 13037 - 5

i

[ 71,00)0 [ 718019 93.71 1.4106 5

I 84.85:0 I 86.0ooo 74,04 1.2529-5

Dynamic Viscosity

O)'!J0 77

m2/s

1.0000 +( 1,4607 - 5

7.9447 I 3.9064 5

79447 I 1.6148 4

83090 I 11242 3

95211 1 1,1935 2

95211 l 19773 2

78832- t 2,1968 I

7.0018 I 18007 ÷0

Kanematic Viscosity

r?,'710

I 0000 +0

2 6743 +0

11055 +1

7 6964 ÷ 1

8.1703 +2

1.3537 +3

1.5039 +4

12327 +5

_'e'(m • K)

25326 2 1.0OO0 +0

1.9505 2 7.7015-1

19505-2 %7015-1

2 05 t0 - 2 8.0983 I

2 3938 "-2 94521 -I

2.3938 2 9.4521-1

t.9336-2 7.6349 1

1.6962 - 2 6.6976 - 1

Table 13

Temperature, Pressure, and Density versus Geometric Altitude, 86 to 1000 km

Altilude Temperature

! T !Z H T

km

86,0

91,0

110,0

120.0

I

150.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

000.0

km' K _C

84.852 186.87 -86.28

89.716 186,87 -86.28

108129 240.00 -33.15

117,777 360,00 86.85

146542 63439 361.24

193899 854,56 58141

286.480 976,01 702.86

376.320 995.83 722.68

463.539 99924 726.09
I I --

548.252 999.85 726.70

630.563 999.97 726.82

710.574 999.99 726,84

788.380 1000.00 726.85

864.071 1000.00 726.85

I

T M P

K mbar

186,95 3.7338- 3

187,36 15380- 3

254.03 7.1040 5

397,91 2.5382- 5

76234 45421- 6

1161,84 8.4732 - 7

1594.82 8 7699 - 8

1804.53 14517- 8

2019,70 30234- 0

2517.13 8.2126 - 10

3621 33 3.I907 - 10

5225 13 1.7036 - 10

657715 1.0873 -10

7351 17 7.5137 -11

i

Pressure

P

tort

28006- 3

1536- 3

:.3284- 5

.9038- 5
I

4069- 6

_3554- 7

,,.5780- 8

.0888- 8

.2677- 9

6,1599 -10

23932 -I0

,2778-10

1,1555-11

L6357-II

Density

P/P0 .o

kghn 3

36850- 6 6.958- 6

15179- 6 2.860- 6

70111- 8 %708- 8

2 5050- 8 2.222- 8

44827- 9 2.076- 9

83624 - 10 2.541 - 10

86552-11 I 916-11

14327 - l t 2£02 - 12

29834-12 5215-13

81052 - 13 1137-13

3 1489 - 13 3.069 - 14

16813 --13 1.136 - 14

10731 13 5.759-15

74154 - 14 3,561 - 15

P/Po

5680- 6

2.335- 6 1

7925- 8

1.814 - 8

1,694- 9

2.074 -I0

1.564-11

2.288 -12

4.257-13

9.278-14

2506 -14

%272 -15

4701-15

2.907-16
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Table14
SevenSecondaryAtmosphericPropertiesversusGeometricAltitude, 86to 1000km

ARit ude

Z It

km kin'

86.0 84.852

91.0 89.716

1100 108.129

120.0 117777

1500 146.542

2000 193.899

300,0 286.480

400.0 376320

500.0 463.539

600.0 548252

7000 630563

800.0 710.574

9000 788.380

10000 864.071

Acceleration

Due to

Gravity

g

m/s 2

95466

9.5318

9.4759

9.4466

9.3597

92175

8.9427

86799

8.4286

8.1880

7.9576

77368

7.5250

73218

Pressure

Scale

Height

tip

km

5.621 +0

5,642+0

7723+0

1.209 +1

2.338 +1

3.618 +1

5119 +1

5.968 +1

6879 +1

8.824 +1

1.306 +2

1.939 +2

2.509 +2

2882 +2

Number

Den_ty

N

m-3

1.447 +20

5.962 + 19

2.144 +18

5.107 +17

5186 +16

7182 +15

6508 +14

1056 +14

2.192 +13

5.949 +12

2_311 +12

1234 +12

7.876 +11

5442 +11

Mean

Particle

Speed

V

nl/s

369,7

370. I

431.7

5393

7465

921 6

10797

1148.5

1215.1

13564

16270

1954.3

2192.7

23181

Mean

Coliision

Frequency

v

s-I

317 +4

131 +4

5.48 +2

1.63 +2

2.3 +1

3.9 +0

4.2 1

72 2

16 2

4.8 -3

22 3

IA -3

1.0 - 3

7.5 4

Meal_ Flee

Path

L

ill

117 2

2.83 -2

7_88 1

3.31 +0

3.3 *1

24 +2

2.6 +3

1.6 +4

7.7 +4

2.8 +5

7.3 +5

14 +6

21 +6

31 +6

Mean

Mt_lecular

Weight

M

kg/kmol

2895

28.89

2727

26.20

24.10

21 30

17.73

15.93

14.33

1151

8.00

5.54

440 i

3.94

Table 15

Number Densities of Six Atmospheric Species versus Geometric Altitude, 86 to 1000 km

Altilude

z I
km

86.0

91.0

II0.0

120.0

150.0

2000

3000

400.0

500.0

6000

700.0

800,0

900.0

10(30.0

H n(N 2 ) n(O)

km' m 3 m 3

84.852

89716

108129

117777

146542

193899

286.480

376320

463.539

548252

630.5O3

710.574

788380

864071

1.130 +20

4.643 +19

1.641 +18

3.726 +17

3.124 +16

2925 +15

9593 +13

4669 +12

2592 +11

1.575 +10

1038 + 9

7_377 + 7

5641 ÷ 6

4.626 + 5

8600+16

2953 +17

2.302 +17

9.274 +16

1.780 +16

4050 +15

5433 +14

9584 +13

1.836 +13

3707 ÷12

7.840 ÷II

1732 +11

3.989 +10

9.562 + 9

Number Density

n(O 2)

m-3

3.031 +19

1.234 +19

2.621 +17

4395 +16

2.750+15

1.918 +14

3.942 +12

1.252 +1 [

4,607 + 9

'?,i:iI71:i
4.105 + 5 3027 + I

2177+ 4 ] 7742 I

I

'88

n(Ar) ,,file)

i11-3 nf 3

1.351 +18 7582 +14

5478 +17 3.419 +14

1046 +16 5.821 +13

1366 +15 3.888 +13

5.000 +13 2.106 +13

1.938 +12 1310 +13

1.568 +10 7566 +12

2 124 + 8 4.868 +12

3446 + 6 3.215 +12

2.154 +12

1.461 +12

1.001 +12

6.933 +11

4.850 +11

nOl)

ill3

3.767 +11

1630 +11

1.049 +11

8.961 +10

8.000+10

7231 +10

6.556 +10

5.961 +10

5.434 +t0

4067 +10
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APPENDIXA

BOUNDARY-VALUE NUMBER DENSITIES OF

ATMOSPHERIC CONSTITUENTS

The boundary-value neutral number densities of the several constituents defined to com-

prise the U.S. Standard Atmosphere at 86 km and above were determined using a deductive

process based upon several assumptions. It was decided to include as constituents of this

model atmosphere only those species which are known to contribute significantly to the

total number density in any portion of the atmosphere between 86 and 1000 kin, because

of either their mixing distribution below the turbopause or their diffusive distribution above

this height. Those gases which appear never to contribute more than about 0.5 percent of

the total composition at any height within this region, or which for various reasons do not

exhibit predictable behavior, were purposely omitted. Using these guidelines, the following

gases were included: molecular nitrogen, N 2 ; molecular oxygen, 02 ; argon, Ar; helium, He;
and atomic oxygen, O. Atomic hydrogen, H, was included at heights above 149 kin, but

was not included in boundary-value considerations at 86 km. The remaining neutral gases

which were used in establishing the sea-level value of the mean molecular weight, but which

are not used at other heights in this model, are listed with the major gases and their respec-

tive contribution to the sea-level mean molecular weight in table 16.

Table 16

Sea-level Atmospheric Composition

Species

N 2

Oz
Ar

CO 2
Ne

He

Kr

Xe

CH 4

H 2

Fractional

Volume

F.
I

0.78084

0.209476

0.00934

0.000314

0.00001818

0.00000524

0.00000114

0.000000087

0.000002

0.0000005

NF. = 0.99999714
1

Molecular Weight

of Species

M i

28.0134

31.9988

39.948

44.00995

20.183

4.0026

83.80

131.30

16.04303

2.01594

F i M i

21.87398326

6.70298063

0.37311432

0.01381912

0.00036693

0.00002097

0.00009553

0.00001142

0.00003208

0.00000101

N(F i • Mi)= 28.964425
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Thefirst threeof thegasesusedin thismodelcomprisemorethan0.9996 of the air in any

unit volume at sea level, as is evident from summing the fractional composition F i over

these three species in table 16. Since the fractional volumes of these major species do not

change significantly below the mesopause, which in this model is located at 86-km altitude,

the sea-level fractional composition can be assumed to be approximately correct at 86 km.

It is believed, however, that photochemical processes lead to small quantities of atomic

oxygen in this height region, and a fractional amount of about 0.00059 by volume, or

exactly 8.6 X 10 _6 atoms per m 3 , was agreed upon by Task Group II as an acceptable con-

centration of O for 86 km.

The introduction of the fixed amount of atomic oxygen at this height, and the simultane-

ous elimination of some minor species made it necessary to adjust the fractional concen-

trations of each of the four remaining species from their known sea-level values, F i, by a
common unknown factor, e, to the 86-km fractional composition values, F' such that

i '

F I
i 6 • F i (58)

The 86-km fractional composition of atomic oxygen is equal to the ratio of n(O) to N,

where n(O) is equal to 8.6 X 10 _6 m3 , the adopted atomic-oxygen number density for

that height, and N is the unknown total number density at that height. The sum of the

86-km fractional composition of the remaining four species is

Z F.S = e "Z Fi1

4 4

(59)

The sum of the total of the 86-km fractional compositions, (that is, of the five species

adopted to comprise the model at this height) must equal unity in accordance with the

expression:

_, n(O)6. F i +
N

4

-1 (60)

The total number density, N, is expressible in terms of the mean molecular weight, M,

Avogadro's constant, NA , and the mass density, p, the value of which is known at 86 km

from other considerations. This relationship is

N A • p
N - (61)

M

The mean molecular weight at 86 km is the sum of the products F'i ° Mi over the five gases

comprising the model at this height. For the atomic oxygen this product is

F'(O).M(O) = n (O)'M(O) (62)
N
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whilethesumof theproductsof theremainingfour gasesisexpressibleas

S F_ Mi = £ "S Fi Mi

4 4

(63)

such that the mean molecular weight, M, at 86 km is expressed as

ZM = e. Fi'Mi + (64)
N

4

Eliminating M between equations 61 and 64, and solving for e yields

NA" p - n (O)'M (0)
E = (65)

N "_--_, Fi.Mi

4

The elimination of e between equations 60 and 65 leads to the following expression for

total number density:

(_Fi)'[NA "P-n(O)'M(O)]

N - + n(O) (66)

Z F i • M i

4

From table 16 the value of _F i, the sum of F i for the four species N 2 , 02 , Ar, and He is

seen to be 0.99966124, while the value of 4_Fi M i for the same four species is seen to be

28.95009918. The value of M(O) is taken to be one half of the value of M(O 2 ), also given
in table 16. The value of 8.6 × 1016 m -3 was adopted for n(O), as previously stated, and

N A has the standard value 6.022169 × 1026 kmol q . The value of p at 86 km is found to
be 6.957880 × 10.6 kg/m 3 . These values, introduced into equation 66, yield a number

density of 1.447265 × 1020 m3 at 86 km. This value introduced into equation 58 leads

to e = 0.99974445, while equation 64 then yields M = 28.952208 for the molecular weight

at 86 km.

For the 86-km height, the values of F'i, the fractional composition of each of the five spe-

cies comprising the model at that height, are given in table 17 as the product e • F'i, along

with the corresponding products F'i " Mi' and the corresponding values of N • F'i, the num-

ber densities of the five gas species comprising the model atmosphere at 86-km height.

The value of sZF[, the sum of the five values of F[ listed in table 17 is seen to be 0.999999999,
essentially the unity value which it should have. The sum of the five values of F! • M. and

1 1

of the five values of n i, that is, sZF; • M'i and 5_ni, both of which are also given in table 17,
shows essentially exact agreement with the value of their respective equivalents, M and N,

computed independently. Thus, the validity of the computation is established.
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Table17
NumberDensitiesandMolecularWeightat 86km

N 2

02
Ar

He

O

F_ = eF. F' = F_, 1 i " mi (kg/kmol) n i , • N (m "3)

0.7806404557

0.2094224682

0.00933761315

0.00000523866

0.00059422421

Z F_ = 0.99999999992
51

21.86839334

6.701267675

0.3730189704

0.0000209683

0.0095072308

NF_-M. = 28.9522082
51 !

1.129793736 × 1020

0.3030898426 X 1020

0.0135140022 X 1020

0.0000075817 X 102o

0.00086 X 1020

Zn.=1.447265163 × 1020
5 i
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APPENDIXB

A SEGMENTOFAN ELLIPSE TO EXPRESS

TEMPERATURE VERSUS HEIGHT

It is desired to determine the expression for a temperature function for a limited height

region, Z_ = 91 to Z 9 = 110 km, in the plane defined by Z and T, such that the slope of

the function at each of the end points exactly matches a prescribed value. At Z = Z 8 ,

where T = T 8 = 186.8673 K, the derivative of the function with respect to Z must be zero,

to match the slope of the temperature-height profile in the isothermal layer between 86

and 91 km. At Z = Z9, where T = T 9 = 240 K, the derivative of T with respect to Z must

be 12 K/km to match the slope of a layer of constant temperature-height gradient between

110 and 120 km. A suitably adjusted ellipse will satisfy these conditions.

The general equation of an ellipse in terms of Z and T with center at Z = 0 and T = 0 is

Z 2 T 2
+ -- = 1 (67)

a 2 A2

With the center shifted to Z = Zc and T = T c the expression becomes

(Z- Ze)2 (T- Te)2
+ - 1 (68)

a2 A2

The derivative of equation 68 with respect to Z is

2(Z - Ze) 2(T- T) dT
+ .--= 0 (69)

a 2 A 2 dZ

To meet the condition for dT/dZ = 0 at Z = Za, equation 69 is evaluated for those condi-

tions, and it is found that Z c = Z s , such that equation 68 may be rewritten as

(z-zs) (T-Tc)2

a 2 A 2

-1 (70)

Evaluating equation 70 for Z = Z 8 and T = T 8 leads to

A = Ts - T (71)

Substituting Z c for its equal Z a in equation 69, and evaluating that expression for Z = Zg,

where T = T 9 and where (dT/dZ) has the particular value LK, 9 = 12, and finally solving
the resulting expression for 1/a 2 yields
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1 - (T9 - Te)'LK,9

a 2 A2.(Z 9 - Zs)
(72)

Evaluating equation 70 at Z = Z9, where T = T9, and solving for 1/a 2 yields

1 A2 _ (T 9 _ Tc )2

a 2 A2.(Z9 - Z8)

(73)

Eliminating 1/a 2 between equations 72 and 73, and solving for T c leads to

LK, 9 "(Z 9-Z8)" T 9+T 2-r 2

Te = LK,9 "(Z9-Z8 ) +2T8-2T9
(74)

The elimination of A between equations 71 and 73 yields

(Z 9 - Zs).(T 8 - To)
a = (75)

[(T8 _ To)2 _ (T 9 _ ,re)2] 1/2

Finally, solving equation 70 for T yields the functional expression

T(Z) = Te + A'I1 - (Z -Zs)211/2.a (76)

The evaluation of equations 71, 74 and 75, in accordance with Z s = 91 km, Ts = 186.8673 K,

Z9 = 110 kin, T 9 = 240 K, and LK, 9 = 12 K/kin, yields the following values for the three
constants in equation 76"

T = 263.1905K
C

A=- 76.3232K

a = - 19.9429 km

Since it was shown that Zc = Z s , the ellipse which meets the required derivative and temp-

erature conditions, has its center at Z = 91 km and T = 263.1905 K, and equation 76 repre-

sents the function which meets the required conditions.
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APPENDIXC

GEOPOTENTIAL AND MOLECULAR-SCALE TEMPERATURE

The concept of geopotential as a measure of height was introduced by Bjerknes et al. (1910)

who, according to Harrison (1954), made use of the term dynamic height in referring to

the geopotential of a point because in meteorology, geopotential is preferable to geometric

height as a representation of the vertical coordinate of the point. Bjerknes proposed the

term geodynamic meter (gdm), or dynamic meter for short, as the name of the unit of

dynamic height. With a slight revision in the definition of this concept, the Aerological

Commission of the International Meteorological Organization in 1947 adopted the geo-

potential meter (gpm) defined such that 1 gpm = 0.98 gdm = 9.8 m 2/s 2 . This definition

related the geopotential meter directly to the sea-level value of the acceleration of gravity.

In the U.S. Standard Atmosphere of 1955, published in NACA Report 1235 (1955), the

standard geopotential meter (sgpm) was defined in terms of the so-called standard sea-level

value of the acceleration of gravity, 9.80665 m/s 2 , such that 1 sgpm = 9.80665 m 2/s 2 .

The use of the standard geopotential meter (now designated as m') was continued in tile

Air Research and Development Command (ARDC) Model Atmosphere, 1956 (Minzner

and Ripley, 1956); in the U.S. Extension to the ICAO Standard Atmosphere (Minzner et al.,

1958); in the ARDC Model Atmosphere, 1959 (Minzner et al., 1959), in the U.S. Standard

Atmosphere, 1962 (COESA, 1962); as well as in the 1975 revision of that Standard Atmo-

sphere (COESA, 1975). Implicitly, geopotential has been used as a measure of height in

all standard and model atmospheres, in which the tabulated values of atmospheric proper-

ties have been calculated on the basis of a value of the acceleration of gravity which is in-

variant with height.

The numerical value of the height of a particular point above sea level, in regions where

the sea-level value of the acceleration of gravity is equal to or less than 9.80665 m/s 2 , is

smaller when expressed in geopotential than when expressed in geometric meters. One

standard geopotential meter is exactly equal to one geometric meter only under very spec-

ialized and perhaps hypothetical conditions. These conditions involve the existence of a

region with a gravitational-field value of exactly 9.80665 m/s 2 (generally near the earth's

surface), and with a zero vertical gradient of that field over a height interval of at least one

geometric meter. The concept of 1 m' is more precisely defined, however, in terms of a

specific change in potential energy of a unit mass, such that 1 m' is exactly the height

increment through which one must lift one kilogram (mass) in order to increase its poten-

tial energy by 9.80665 J. The geometric equivalent of this height increment is essentially

one geometric meter (m) at sea level, but increases to more than 1 m with increasing height,

in a manner inversely proportional to the corresponding decrement of the acceleration of

gravity.
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Theconceptof geopotentialhassomeverymeaningfulusesin meteorologyandaeronomy.
Oneof its principaladvantagesis thereductionfrom 4 to 3 of thenumberof variablesin
thehydrostaticequationwhengeopotentialis introduced.This featureis particularlyde-
sirablein expressionsinvolvingthe integratedformsof thehydrostaticequation.Thus,the
useof thisconcept,eitherimplicitly or explicitly in thedefinitionof standardatmospheres
producedprior to thedevelopmentof high-speeddigitalcomputers,simplifiedthedefining
equationsandreducedthework involvedin manualcomputationof therelatedtables.
Theuseof geopotentialhasbeenmaintainedin all subsequentstandardatmospheresin
orderto avoidanyrevisionof the lowerportionof thetableswhichhaverepresentedthe
establishedstandardfor thepast50years.

Theintroductionof theconceptof molecular-scaletemperature,TM, cameat atimewhen
standard-atmospheretableswerebeingextendedto heightswherethecomposition,and
hencethemeanmolecularweight,wereunknown.Theconcept(without aparticularname)
wasfirst appliedto atmosphericmodelsby theRocketPanel(1952)in apaperwhichre-
ferredto a"derived'Temperature'baseduponanassumedconstantmeanmolecularweight
p of 28.966 g/mole for the atmosphere." The use of this special kind of temperature not

only avoided the problem of determining or guessing at a value of mean molecular weight

at high altitudes, but also eased the problem of hand or desk-computer calculations by

leading to simpler equations than would have resulted if specific height functions had been

introduced for both kinetic temperature and mean molecular weight.

The name molecular-scale temperature for this derived temperature first appeared in the

ARDC Model Atmosphere, 1959. In this model, molecular-scale temperature, T M, at any

height Z was related to the kinetic temperature, T, at height Z by the relationship T M(Z)

= T(Z) [M0/M(Z)] where M0 was the currently accepted sea-level value of the mean mole-

cular weight of air, 28.9644 kg/kmol, and M was the implicit value of the mean molecular

weight of air at height Z. This concept was carried into the U.S. Extension to the ICAO

Standard Atmosphere, 1958; the ARDC Model Atmosphere, 1959; the U.S. Standard Atmo-

sphere, 1962 (COESA, 1962), and has been carried into the 1975 revision to that Standard

Atmosphere (COESA, 1975).

The temperature-height profile of each of the first three of these four previously published

models was defined in terms of T M (in units of Kelvin, K) as a function of geopotential

height H (in units of m') Over the entire height range of these models. Since many aerono-

mers studying the upper atmosphere are unfamiliar with these quantities and prefer the

quantities kinetic temperature, T, and geometric heights, Z, it was decided that, in the

US. Standard Atmosphere, 1962 (COESA, 1962) the model should be divided at 90 geo-

metric kilometers, with temperatures in that part of the model from 0 to 90 km defined in

terms of T M and H, and in that part above 90 km defined in terms of T and Z. This proce-
dure has been continued in the t975 U.S. Standard Atmosphere, but in this revision, the

division occurs at 86 geometric kilometers where the geopotential is 84.8520 km', and

M = 28.9522 kg/kmol.

58



Beforethenamemolecular-scaletemperaturewasusedin modelatmospheres,Brombacher
(1953),in anattemptto simplifythecalculationof standardatmospheres,combinedthe
height-dependentaccelerationof gravity,theheight-dependentmolecularweight,andthe
height-dependentkinetictemperatureinto asinglevariable,whichhecalledscale-height
temperature.Theuseof thisvariable,howevermeritorious,wasneveradoptedin U.S.
StandardAtmospheres.
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APPENDIXD

THE CALCULATION OF A DYNAMIC MODEL FOR THE

1975 U.S. STANDARD ATMOSPHERE

INTRODUCTION

The objective of this appendix is to describe the procedure for the calculation of a dynamic

model of the earth's atmosphere between 50 and 150 km, comprised of an internally con-

sistent set of diurnally averaged gas concentrations versus altitude, one for each of the four

major atmospheric gas species in this height region, that is, nitrogen, molecular and atomic

oxygen, and argon, where each of these concentration profiles meets the following two

conditions:

1. The concentration values versus height are the result of a time-dependent, photo-

chemical-transport calculation which incorporates measured chemical-reaction-rate

constants, solar-radiation fluxes, and turbulent diffusion coefficients into coupled

sets of equations of motion and continuity.

2. The calculated number densities of each of the four species at 150 km fall within

particular limits recommended by the COESA Working Group.

This sophisticated and detailed calculation serves to establish the physical basis for the

generation of dynamic models of the earth's atmosphere, and yields height profiles of

number-density flux values which are approximated by artificially adjusted functions for

the calculation of the 1975 U.S. Standard Atmosphere.

BASIC CONSI DERATIONS

The species considered are O, 02 , 03 , O =D, 02 (1 Ag), OH, H, HO 2 , H20, H202 , H 2 , Ar,
and He. The number densities, from 50 to 150 km, are obtained through a semi-implicit,

finite-difference solution of a system of mass- and momentum-conservation equations

(Shimazaki, 1967; Keneshea and Zimmerman, 1970). In these calculations, thermal-diffu-

sion factors for the species, H, H 2 and He have the values respectively of-0.39, -0.31, and
-0.36 (Zimmerman and Keneshea, 1975). The numerical approach is essentially that in-

troduced by Shimazaki (1967), but modified at the boundaries and in the volume integra-

tions, following George et al. (1972). Table 18 lists the chemical reactions and the asso-

ciated rate constants actually used in the generation of the resulting concentration profiles.

It should be noted, however, that refined rate-constant measurements, made since these

calculations were completed, indicate the need for a revision of some of the listed values.

The current calculations have not been updated with these new rate-constant values, how-

ever, since the changes have only a negligible influence on the concentrations of O, 02 , Ar,
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Table18
TheChemicalReactionsandAssociatedReactionRateskj
Expressedin theFormof theValueof RateCoefficients

Aj, Bi,andCj whereki = Aj • (T/300)BJX exp(Ci/T)

REACTION Aj Bj C i

1 O _O +M_O2 +M

2 O dO 2 +M_O 3 _M

3 O + O 3 ' O 2 + O 2

4 H + O 3 _ O 2 + OH

5 OH + O _ H + O 2

6 OH +O 3 - HO2 + O2

7 H + 02 + M _ HO 2 + M

8 HO 2 40 -. OH + 02

9 HO 2 +O 3 -_OH +O 2 +O_

10 OH +OH _ H20 +O

11 OH + HO 2 '" H20 + 02

12 H + HO 2 _ H 2 + 02

13 H + HO 2 ' OH + OH

14 O + H 2 _ OH + H

15 HO 2 + HO 2 _ H202 ÷ 02

16 OH + H2O 2 -" H20 + HO 2

17 O + H202 - OH + HO 2

18 H + H202 _ H 2 + HO2

19 01 D + 03 " 02 + 02

20 O l D + 02 _ O + 02

21 OID + N 2 _ O + N 2

22 OID + H 2 - OH + H

23 O tD + I{20 _ OH + OH

24 O2tAg+ O 3 _O 2 +03

25 O21Ag-_ M _ 02 + M

26 O2tAg+ H _ OH +O

27 O2 tAg _ 02

28 02 + hv _ O + O

29 02 + hv - O l D + O

30 03 + hv _ 0 2 + O

31 0 3 +by -OlD +O21:_g

32 H20 +hv - OH + H

33 H202 +hv - OH +OH

3.00E-33

5.50E-34

1.20E-If

2.60E-n

5.00E-11

4.00E-14

7.40E-33

1.00E-11

1.00E-17

2.00E-12

2.00E-10

3.00E-12

1.00E-11

7.00E-11

3.00E-12

1.70E-11

4.00E-15

3.90E-11

3.00E-10

6.00E-11

9.00E-11

1.00E-11

1.00E-11

3.00E-15

4.40E-19

1.10E-14

2.58E-04

-2.9

-2.6

-2.00E+03

6.10E+02

-5.10E+03

-9.00E+02

-4.60E+03

Note: The units of the two-body reaction rates are cm 3 s-', while those

for the three-body reaction rates are cm 6 s "1.
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andHein the altitude region above 80 km. The intensity of the solar-radiation flux used

in these calculations is 0.65 of that shown in figure 17, which depicts the Ackerman ( 1971 )

values of solar-radiation flux versus wavelength. The absorption cross sections were taken

from various sources. For 02 and 03 , these cross sections were taken from the compila-
tion of Ackerman (1971) with the exception of those for the Schumann-Runge bands of

02 , for which region the values measured by Hudson and Mahle (1972) were used. The
adopted absorption cross sections for water vapor and hydrogen peroxide are those re-

ported by Watanabe and Zelikoff (1953), and by Volman (1963), respectively. The temp-

erature-height profile up to 150 km and the values of mean molecular weight up to the

turbopause are those recommended by the Working Group of COESA. Using these data,

the initial species distributions were calculated assuming complete mixing up to the turbo-

pause, and diffusive equilibrium above it.
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Figure 17. Solar radiation flux versus wavelength in the region

from 115 to 310 nm as reported by Ackerman.

The total number density was obtained by integrating the hydrostatic equation, where the

sea-level values of mass density and of mean molecular weight were taken from the U.S.

Standard Atmosphere, 1962 (COESA, 1962).

Beginning with these static profiles, the steady-state solution of all species was determined.

The time-dependent calculations were then allowed to proceed for 15 solution days using

a semi-implicit, finite-difference technique, a variable-time step up to 30 minutes, and a

fixed-height step of 100 m. This stringent height step was shown to be necessary to restrict

the errors generated by species gradients when height steps larger than 100 m were used.
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The height-dependent, turbulent diffusion coefficients used are shown in figure 18, and

are based upon observations of turbulence in chemical trails (Philbrick et al., 1973). These

values are derived (Zimmerman and Trowbridge, 1973) from the fluctuation dynamics ob-

served in rocket-borne chemical releases, and are valid from about 88 to 112 km. Because

of the lack of chemical-tracer wind and turbulence measurements in the altitude region

between 50 and 88 km, an exponential fit has been assumed between the reported value

of 1 × l0 s cm 2 sl (Beaudoin et al., 1967) at 50 km, and the values at 88 km.
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Figure 18. Eddy-diffusion coefficient versusaltitude.

RESULTS

The time-dependent calculations were continued for the above mentioned period of time,

after which the species concentrations reproduced themselves to within 1 percent over a

diurnal cycle, a condition which is called arriving at diurnal reproducibility. The diurnal

averages of the concentration of O, 02 , and Ar are then calculated and extrapolated to

250 km by assuming diffusive equilibrium without thermal diffusion above the 150-km

boundary. Figure 19, depicting the height profiles of the N 2 concentration and tempera-

ture, shows the initial conditions used in these one-dimensional calculations. Figure 20

shows the resulting diurnally averaged height profiles of O, 02 , and Ar, each of which is in

good agreement with the 150-km values recommended by the COESA Working Group, and

shown as error bars.
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Thus, it has been demonstrated that an internally self consistent model of the density struc-

ture of the upper mesosphere and lower thermosphere may be calculated from measured

values of solar radiation flux, chemical-reaction-rate constants, and derivatives of measured

vertical-turbulent-transport parameters deduced from chemical-trail studies.
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